|本期目录/Table of Contents|

[1]杨洁,李玉星,韩辉.高倍泡沫性能组合调节研究[J].中国安全生产科学技术,2018,14(10):175-180.[doi:10.11731/j.issn.1673-193x.2018.10.028]
 YANG Jie,LI Yuxing,HAN Hui.Study on combination adjustment for performance of high expansion foam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):175-180.[doi:10.11731/j.issn.1673-193x.2018.10.028]
点击复制

高倍泡沫性能组合调节研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年10期
页码:
175-180
栏目:
职业安全卫生管理与技术
出版日期:
2018-10-31

文章信息/Info

Title:
Study on combination adjustment for performance of high expansion foam
文章编号:
1673-193X(2018)-10-0175-06
作者:
杨洁李玉星韩辉
(中国石油大学(华东) 山东省油气储运安全省级重点实验室,山东 青岛 266580)
Author(s):
YANG Jie LI Yuxing HAN Hui
(Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum, Qingdao Shandong 266580, China)
关键词:
高倍泡沫LNG蒸气危害泡沫性能整合阻热效应加热蒸气效应加速蒸发效应
Keywords:
high expansion foam LNG vapor hazard foam performance combination heat resistance effect heating vapor effect accelerated evaporation effect
分类号:
X937;TE88
DOI:
10.11731/j.issn.1673-193x.2018.10.028
文献标志码:
A
摘要:
为了研究高倍泡沫性能对抑制LNG蒸气扩散效果的影响,使用田口方法综合分析泡沫发泡倍数、稳定性与覆盖率间的关联,研究操作参数、集泡装置与阶段对这3个性能影响程度与规律的异同、3个性能整合调节的可行性与具体实现方法。研究结果表明:发泡倍数与覆盖率成正相关,函数拟合重合度最高为70%,两者与稳定性无相关性;溶液压力对3个性能的影响最大。
Abstract:
In order to study the influence of the performance of high expansion foam on inhibiting the diffusion effect of LNG vapor, the correlations among the foaming multiple, stability and coverage rate of foam were comprehensively analyzed by using the Taguchi method, then the differences and similarities in the influence degrees and laws of operating parameters, foam collecting device and period on these three performance were studied, and the feasibility and specific realization method of three threeperformance combination adjustment were studied. The results showed that the foaming multiple was positively correlated to the coverage rate, with the maximum functional fitting contact ratio of 70%, and both of them had no correlation with the stability. The solution pressure had the greatest influence on the three threeperformance.

参考文献/References:

[1]BP’s Energy Outlook [EB/OL]. (2017-2-3) [2018-03-01].https://www.bp.com/zh_cn/china/ reports-and-publications /_bp_2017_.html.
[2]FAYJ A. Spread of large LNG pools on the sea [J]. Journal of Hazardous Material, 2007,140(3):541-551.
[3]University Engineers.An experimental study on the mitigation of flammable vapor dispersion and fire hazards immediately following LNG spills on land[C]// The 79th Annual Fire Protection Association, 1975.
[4]PERSSONB, LONNERMARK A, PERSSON H. Foamspex: Large scale foam application—Modelling of foam spread and extinguishment[J]. Fire Technol. 2003( 39):347-362.
[5]中华人民共和国住房和城乡建设部.泡沫灭火系统设计规范:GB 50151-2010 [S].北京:中国计划出版社,2011.
[6]National Protection Association. Standard for Low-, Medium- and High-Expansion Foam[Z]. NFPA 11, 2016.
[7]ZHANG B, LIU Y, OLEWSKI T, et al. Blanketing effect of expansion foam on liquefied natural gas spilling pool[J]. Journal of Hazardous Material, 2014(280):380-388.
[8]KENNETH Z. LNG facilities-engineered fire protection systems[C]//The 79th Annual Fire Protection Association, 1975.
[9]TAKENO K, ICHINOSE T, TOKUDA K, et al. Effects of high expansion foam dispersed onto leaked LNG on the atmospheric diffusion of vaporized gas [J]. Journal of Loss Prevention Process Industries, 1998,9(2):125-133.
[10]陈利琼, 冯雨翔, 宋利强, 等. 大型油罐火灾爆炸危害范围研究[J]. 中国安全生产科学技术, 2018,14(1): 100-105. CHEN Liqiong, FENG Yuxiang, SONG Liqiang, et al. Study on damage range of fire and explosion of large oil tank [J]. Journal of Safety Science and Technology, 2018,14(1): 100-105.
[11]YUN G, MANNAN M S. Key observations of liquefied natural gas vapor dispersion field test with expansion foam application[J]. Industrial & Engineering Chemistry Research, 2010,50(3):1504-1514.
[12]YANG X. Common lessons learned from an analysis of multiple case histories [J]. Process Safety Progress, 2011, 30 (30): 143-147.
[13]ZHANG B, LIU Y, OLEWSKI T, et al. Effects of expansion foam on controlling LNG vaporization rate [C]//Aiche Spring National Meeting, 2014.
[14]SYDNEY K. Foaming volume and foam stability[J]. Journal of Physical Chemistry, 1946, 19(1): 145-149.
[15]YANG J, LI Y X, ZHU J L, et al. Factors affecting the expansion ratio of suppressant foam [J]. Corrosion and Protection, 2017(38):1-7.
[16]YANG J, LI Y X, ZHU J L, et al. Quantitative study of the factors of LNG liquid foam stability: Operating parameters and collection containers and time[J]. Process safety and environmental protection,2018(117): 223-231.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2018-08-20
基金项目: 国家重点研发计划(2017YFC0805800);国家自然基金项目(51504278);山东省重点研发计划项目(2017GSF220007)
作者简介: 杨洁,博士研究生,主要研究方向为LNG安全保障技术。
通信作者: 李玉星,博士,教授,主要研究方向为LNG、多相流、水合物。
更新日期/Last Update: 2018-11-07