|本期目录/Table of Contents|

[1]魏丁一,杜翠凤,张宏光,等.胶结充填体水化放热规律及其影响研究[J].中国安全生产科学技术,2018,14(10):138-143.[doi:10.11731/j.issn.1673-193x.2018.10.022]
 WEI Dingyi,DU Cuifeng,ZHANG Hongguang,et al.Study on hydration heat release laws of cemented backfill body and its influence[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):138-143.[doi:10.11731/j.issn.1673-193x.2018.10.022]
点击复制

胶结充填体水化放热规律及其影响研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年10期
页码:
138-143
栏目:
职业安全卫生管理与技术
出版日期:
2018-10-31

文章信息/Info

Title:
Study on hydration heat release laws of cemented backfill body and its influence
文章编号:
1673-193X(2018)-10-0138-06
作者:
魏丁一12杜翠凤12张宏光3徐海月12
(1.金属矿山高效开采与安全教育部重点试验室,北京 100083;2. 北京科技大学 土木与资源工程学院,北京 100083;3.马钢(集团)控股有限公司南山矿业公司,安徽 马鞍山 243000)
Author(s):
WEI Dingyi12 DU Cuifeng12 ZHANG Hongguang3 XU Haiyue12
(1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines. Beijing 100083, China;2. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China;3. Nanshan Mine Company, Magang (Group) Holding Co., Ltd., Maanshan Anhui 243000, China)
关键词:
胶结充填体水化热温度通风量热环境
Keywords:
cemented backfill body hydration heat temperature ventilation volume thermal environment
分类号:
TD72
DOI:
10.11731/j.issn.1673-193x.2018.10.022
文献标志码:
A
摘要:
为了研究充填采矿法中胶结充填体的水化放热作用,现场实测充填体温度,并对充填体散热的影响及治理进行了研究。研究结果表明:充填采矿法的采掘作业面均依靠局扇供风,因此通风效果直接影响作业面热环境,充填作业完成后3 d内放热量达到最大,此时充填体周围采场气温达28℃以上,应依据降温风速(0.5~1.0 m/s)的要求重新计算需风量;运用Ventsim预测采深为1 456 m时在3种风速下的采场热环境,当独头风量为3 m3/s时属于一级热害矿井,当风量增至6 m3/s和9 m3/s时热害降至一级标准以下,热环境明显改善,且入风为21.4℃、风量为6 m3/s时采场气温会降至27.2℃,因此加大采场有效风量和风速是改善深部热环境的有效措施;充填水化热与采场气温呈正相关,因此应合理安排作业计划,避免在放热量大的充填体周围作业,如需作业应加强通风,人员上岗应进行职业健康检查,合理安排岗位并及时发放降暑饮品,以免出现紧急情况或危险。
Abstract:
In order to study the hydration heat release effect of the cemented backfill body in the filling mining method, the temperature of the cemented backfill body was measured at the site, and the influence and treatment of heat dissipation of the cemented backfill body were studied. The results showed that all the excavation working faces using the filling mining method relied on the local ventilator for air supply, therefore, the ventilation effect directly affected the thermal environment of the working face. The heat release amount reached the maximum value within 3 days after the completion of the filling operation, and the temperature of stope around the cemented backfill body was above 28 ℃, so the required air volume should be recalculated according to the requirements of the cooling wind speed (0.5-1.0 m/s). Ventsim was used to predict the thermal environment of stope under three wind speeds when the mining depth was 1 456 m, which belonged to the firstlevel thermal hazard mine when the singleend air volume was 3 m3/s. When the air volume increased to 6 m3/s and 9 m3/s, the thermal hazard level dropped below the firstlevel standard, the thermal environment was significantly improved, and the temperature of stope would drop to 27.2 ℃ when the input air was 21.4 ℃ and the air volume was 6 m3/s, therefore, increasing the effective air volume and wind speed of the stope was the effective measures to improve the deep thermal environment. The filling hydration heat was positively correlated with the temperature of stope. Therefore, the operation plan should be arranged reasonably to avoid the working around the cemented backfill body with large heat release amount, the ventilation should be enhanced to remove the hydration heat if the work is required, the occupational health check should be carried out during the periods of before the post and on the post for the personnel, the posts should be arranged reasonably, and the heatstroke prevention drinks should be distributed in time to avoid the emergencies or dangers.

参考文献/References:

[1]王文才, 魏丁一, 王振涛, 等. 基于Fluent的矿井活塞风动力效应研究[J]. 工业安全与环保, 2017, 43(9): 29-31. WANG Wencai, WEI Dingyi, WANG Zhentao, et al. Research of mine wind power piston effect based on fluent[J]. Industrial Safety and Environmental Protection, 2017, 43(9): 29-31.
[2]付建新, 杜翠凤, 宋卫东. 全尾砂胶结充填体的强度敏感性及破坏机制[J]. 北京科技大学学报, 2014, 36(9): 1149-1157. FU Jianxin, DU Cuifeng, SONG Weidong. Strength sensitivity and failure mechanism of full tailings cemented backfills[J]. Chinese Journal of Engineering, 2014, 36(9): 1149-1157.
[3]毋林林, 康天合, 尹博, 等. 粉煤灰膏体充填材料水化放热特性的微量热测试与分析[J]. 煤炭学报, 2015, 40(12): 2801-2806. WU Linlin, KANG Tianhe, YIN Bo, et al. Microcalorimetric test and analysis of hydration heat of fly ash paste-filling material[J]. Journal of China Coal Society, 2015, 40(12): 2801-2806.
[4]陈川, 冷洁, 邢添, 等. 水灰比和低温环境影响的水泥水化放热计算模型[J]. 混凝土, 2015(1): 21-24,31. CHEN Chuan, LENG Jie, XING Tian, et al. Computing model for the cement paste hydration heat considering the effect of water-cement ratio and low temperature[J]. Concrete, 2015(1): 21-24, 31.
[5]王起才, 陈川, 张戎令, 等.考虑持续低温影响的水泥水化放热计算模型[J].建筑材料学报,2015,18(2): 249-254. WANG Qicai, CHEN Chuan, ZHANG Rongling, et al. Computing model for the hydration heat of cement paste considering the effect of sustained low temperature[J]. Journal of Building Materials, 2015,18(2):249-254.
[6]段运, 王起才, 张戎令, 等. 持续负温环境下水泥水化特性试验研究[J]. 铁道建筑, 2015(12): 134-137. DUAN Yun, WANG Qicai, ZHANG Rongling, et al. Experimental study on hydration characteristics of cement paste under sustained minus temperature[J]. Railway Engineering, 2015(12): 134-137.
[7]段运, 王起才, 张戎令, 等. 低温(3℃)下高强混凝土强度增长及其水化程度研究[J].硅酸盐通报,2016, 35(1): 12-18. DUAN Yun, WANG Qicai, ZHANG Rongling, et al. Strength Growth of High Strength Concrete and Its Degree of Hydration under Low Temperature(3℃)[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 12-18.
[8]张娜, 刘晓明, 孙恒虎. 赤泥-煤矸石基胶凝材料水化过程XPS分析[J]. 金属矿山, 2014,43(3): 171-176. ZHANG Na, LIU Xiaoming, SUN Henghu. XPS analysis on hydration process of red mud-coal gangue based based cementitious materials[J].Metal Mine, 2014,43(3): 171-176.
[9]王中杰, 倪文, 高术杰, 等. 人工鱼礁用钢渣混凝土胶凝材料的水化特性[J].金属矿山,2012,41(6): 156-159. WANG Zhongjie, NI Wen, GAO Shujie, et al. Hydration characteristic of cementitious material of steel slag concrete used for artificial reefs[J].Metal Mine,2012,41(6): 156-159.
[10]朱振泱, 强晟, 郑占强, 等. 用遗传算法确定考虑温度历程的混凝土水化放热模型参数及试验验证[J].农业工程学报, 2013, 29(1): 86-92. ZHU Zhenyang, QIANG Sheng, ZHENG Zhanqiang, et al. Determination of parameters for hydration exothermic model considering concrete temperature duration by genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 86-92.
[11]董继红, 李占印. 水泥水化放热行为的温度效应[J]. 建筑材料学报, 2010, 13(5): 675-677. DONG Jihong, LI Zhanyin. Effect of temperature on heat release behavior of hydration of cement[J]. Journal of Building Materials, 2010, 13(5): 675-677.
[12]LEE Y, KIM J K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model[J]. Computers and Structures, 2009(5): 1-17.
[13]AZENHA M, FARIA R. Temperatures and stresses due to cement hydration on the R/C foundation of a wind tower-A case study[J].Engineering Structures, 2008(30):2392-2400.
[14]李虹燕, 丁铸, 邢锋, 等. 粉煤灰、矿渣对水泥水化热的影响[J]. 混凝土, 2008(10): 54-57. LI Hongyan, DING Zhu, XING Feng, et al. Effect of fly ash and slag on hydration heat evolution of cement[J]. Concrete, 2008(10): 54-57.
[15]国家安全生产监督管理总局.MT/T 1136—2011矿井降温技术规范[S].北京:中国标准出版社, 2011.

相似文献/References:

[1]姚囝,叶义成,王其虎,等.低强度胶结充填体相似材料配比试验研究[J].中国安全生产科学技术,2017,13(8):30.[doi:10.11731/j.issn.1673-193x.2017.08.005]
 YAO Nan,YE Yicheng,WANG Qihu,et al.Study on proportioning tests of low strength similar material for cemented backfill[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):30.[doi:10.11731/j.issn.1673-193x.2017.08.005]

备注/Memo

备注/Memo:
收稿日期: 2018-08-19
基金项目: 国家自然科学基金项目(51274023)
作者简介: 魏丁一,博士研究生,主要研究方向为深部降温与热害治理。
更新日期/Last Update: 2018-11-07