|本期目录/Table of Contents|

[1]李倩,吴晓南,卢泓方,等.人工煤气管道萘颗粒沉积规律研究[J].中国安全生产科学技术,2018,14(8):94-100.[doi:10.11731/j.issn.1673-193x.2018.08.015]
 LI Qian,WU Xiaonan,LU Hongfang,et al.Study on deposition laws of naphthalene particles in manufactured gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):94-100.[doi:10.11731/j.issn.1673-193x.2018.08.015]
点击复制

人工煤气管道萘颗粒沉积规律研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年8期
页码:
94-100
栏目:
职业安全卫生管理与技术
出版日期:
2018-08-31

文章信息/Info

Title:
Study on deposition laws of naphthalene particles in manufactured gas pipeline
文章编号:
1673-193X(2018)-08-0094-07
作者:
李倩1吴晓南1卢泓方23余思颖1李廉卿1王鑫鑫4
(1.西南石油大学 土木工程与建筑学院,四川 成都 610500;2. 西南石油大学 石油与天然气工程学院,四川 成都 610500;3. 美国路易斯安那理工大学 非开挖技术中心,美国 洛杉矶 71270;4.中国石油天然气第一建设有限公司,河南 洛阳 471023)
Author(s):
LI Qian1 WU Xiaonan1 LU Hongfang23 YU Siying1 LI Lianqing1 WANG Xinxin4
(1. School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu Sichuan 610500, China;2. School of Petroleum Engineering, Southwest Petroleum University, Chengdu Sichuan 610500, China;3. Trenchless Technology Center, Louisiana Tech University, Ruston, LA 71270, USA;4. China Petroleum First Construction Corporation, Luoyang Henan 471023, China)
关键词:
煤气管道萘颗粒数值模拟沉积率
Keywords:
manufactured gas pipeline naphthalene particle numerical simulation deposition rate
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2018.08.015
文献标志码:
A
摘要:
针对萘在人工煤气管道中沉积会造成管道堵塞,影响管道的安全运行的这一问题,以昆明人工煤气管道为例,运用计算流体动力学软件Fluent,选用离散相模型和雷诺应力模型,对水平直管、水平弯管和三通管进行萘颗粒沉积的数值模拟,对于不同的管径、弯曲比、管径比,分别分析萘颗粒直径、入口速度、温度及压力对萘颗粒沉积的影响。研究结果表明:水平直管、水平弯管、三通管中的萘颗粒沉积率与颗粒粒径成正相关关系,而与气流入口速度、压力成负相关关系;萘颗粒在人工煤气管道中的沉积率主要受颗粒直径、气流入口速度的影响;萘颗粒的沉积率随着水平直管的管径增大而增大,随着水平弯管的弯曲比增大而增大,随着三通管的管径比增大而先增大后减小;可通过适当增大管内煤气输送速度、压力,降低温度来降低萘颗粒在人工煤气管道中的沉积速度,进而减少萘颗粒沉积的发生。
Abstract:
Aiming at the problem that the deposition of naphthalene in the manufactured gas pipeline will cause the blocking of pipeline and influence the safe operation of pipeline, taking the manufactured gas pipeline in Kunming as the example, the numerical simulation on the deposition of naphthalene particles in the horizontal straight pipe, horizontal bend pipe and tee pipe were carried out based on the discrete phase model (DPM) and the Reynolds stress model (RSM) by using the computational fluid dynamics software FLUENT, and the influence of diameter of naphthalene particle, inlet velocity, temperature and pressure on the deposition of naphthalene particles under different pipe diameters, curvature ratios and pipe diameter ratios were analyzed respectively. The results showed that the deposition rates of naphthalene particles in the horizontal straight pipe, horizontal bend pipe and tee pipe were positively correlated with the diameter of naphthalene particle, and negatively correlated with the inlet velocity of gas flow and pressure. The deposition rate of naphthalene particles in the manufactured gas pipeline was mainly affected by the diameter of naphthalene particle and the inlet velocity of gas flow. The deposition rate of naphthalene particles increased with the increase of pipe diameter of the horizontal straight pipe, and increased with the increase of curvature ratio of the horizontal bend pipe, while increased first and then decreased with the increase of pipe diameter ratio of the tee pipe. The deposition speed of naphthalene particles in the manufactured gas pipeline could be reduced by appropriately increasing the gas transportation velocity and pressure and decreasing the temperature in the pipeline, thus reduce the occurrence of deposition of naphthalene particles.

参考文献/References:

[1]王中元, 罗东坤, 刘璘璘. 我国城市燃气发展阶段及其主要特征[J]. 油气储运, 2016, 35(2):115-123. WANG Zhongyuan, LUO Dongkun, LIU Linlin. Urban gas development phases in China and its main characteristics[J]. Oil & Gas Storage and Transportation,2016,35(2): 115-123.
[2]SEHMEL G A. Particle eddy diffusivities and deposition velocities for isothermal flow and smooth surfaces[J]. Journal of Aerosol Science, 1973, 4(2):125-138.
[3]LIU B Y H, AGARWAL J K. Experimental observation of aerosol deposition in turbulent flow[J]. Journal of Aerosol Science,1974,55(2):145-155.
[4]WOOD N B. The mass t ransfer of particles and acid vapor to cooled surfaces[J]. Journal of the Institute of Energy, 1981, 76(1):76-93.
[5]PAPAVERGOS P G, HEDLEY A B. Particle deposition behavior from turbulent flows[J]. Chemical Engineering Research and Design, 1984, 62(3):275-295.
[6]PUI D H, FRANCISCO R N,LIU B H. Experimental study of particle deposition in bends of circular cross section[J]. Aerosol Science & Technology, 1987, 7(3):301-315.
[7]TIAN L, AHMADI G. Transport and deposition of ellipsoidal fibers in low Reynolds number flows[J]. Journal of Aerosol Science, 2012, 45 (1) :1-18.
[8]MCGLINCHEY D,COWELL A,KNIGHT E A,et al. Bend pressure drop predictions using the euler-euler model in dense phase pneumatic conveying[J]. Particulate Science & Technology, 2007, 25(6):495-506.
[9]陈磊,李长俊,季楚凌.水平弯管内硫沉积数值模拟研究[J].中国安全生产科学技术,2015,11(2): 28-35. CHEN Lei,LI Changjun,JI Chuling. Study on numerical simulation of sulfur deposition in horizontal bend [J]. Journal of Safety Science and Technology, 2015, 11(2): 28-35.
[10]HUSEYIN H, LEVY E K,BESIR B. Investigation of gas-solid flow structure after a 90° vertical-to-horizontal elbow for low conveying gas velocities[J]. Advanced Powder Technology, 2005, 16(3):261-274.
[11]ZHANG P S, ROBERTS R M,BENARD A. Computational guidelines and an empirical model for particle deposition in curved pipes using an Eulerian-Lagrangian approach[J]. Journal of Aerosol Science, 2012, 53(2):1-20.
[12]伍清晔, 李善斌, 张兴梅, 等. 关于人工煤气管道堵塞问题的综合研究[J]. 哈尔滨建筑大学学报, 1998, 31 (2): 73-78. WU Qingye, LI Shanbin,ZHANG Xingmei,et al. The research on the gas pipeline plugging problem [J]. Journal of Harbin University of Civil Engineering and Architecture, 1998, 31(2): 73-78.
[13]NAZARROV V G. Removal of naphthalene and tar from coke-oven gas in primary cooling and condensation[J]. Coke & Chemistry, 2016, 59(6):221-234.
[14]韩云龙, 殷传慧, 胡永梅. 通风管道结构形式对颗粒物沉积的影响[J]. 过程工程学报, 2015, 15(1):40-44. HAN Yunlong,YIN Chuanhui,HU Yongmei. Effect of ventilation duct structure on deposition of particles [J]. The Chinese Journal of Process Engineering, 2015, 15(1): 40-44.
[15]樊兴祥. 昆明地区人工煤气管道内壁腐蚀与管道内部堵塞机理及预防措施[J]. 昆明理工大学学报(自然科学版), 2016, 41 (6): 76-81. FAN Xingxiang. Internal corrosion and clogging mechanism and preventive measures of artificial gas pipe network in Kunming area [J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2016, 41(6): 76-81.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-09-03