|本期目录/Table of Contents|

[1]沈正祥,陈虎,王杜,等.铸造工艺中蒸汽爆炸事故形成机制分析[J].中国安全生产科学技术,2018,14(5):150-154.[doi:10.11731/j.issn.1673-193x.2018.05.022]
 SHEN Zhengxiang,CHEN Hu,WANG Du,et al.Analysis on formation mechanism of steam explosion accident in casting process[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(5):150-154.[doi:10.11731/j.issn.1673-193x.2018.05.022]
点击复制

铸造工艺中蒸汽爆炸事故形成机制分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年5期
页码:
150-154
栏目:
职业安全卫生管理与技术
出版日期:
2018-05-31

文章信息/Info

Title:
Analysis on formation mechanism of steam explosion accident in casting process
文章编号:
1673-193X(2018)-05-0150-05
作者:
沈正祥12陈虎1王杜1陈定岳1吕中杰2黄风雷2
(1.宁波市特种设备检验研究院,浙江 宁波 315048;2.北京理工大学 爆炸科学与技术国家重点实验室,北京 100081)
Author(s):
SHEN Zhengxiang12 CHEN Hu1 WANG Du1 CHEN Dingyue1 LYU Zhongjie2 HUANG Fenglei2
(1.Ningbo Special Equipment Inspection & Research Institute, Ningbo Zhejiang 315048, China;2.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
关键词:
铸造蒸汽爆炸熔融铝液冲击波过热
Keywords:
casting steam explosion molten aluminum shock wave overheat
分类号:
X924.4;O381
DOI:
10.11731/j.issn.1673-193x.2018.05.022
文献标志码:
A
摘要:
为了揭示金属铸造工艺中蒸汽爆炸事故形成原因,建立了大质量熔融铝液遇水自触发爆炸反应模拟装置,研究了铝液-水爆炸体系的温度变化特征和冲击波传播规律,并对产物进行回收分析。结果表明:爆炸反应的触发与铝-水的相对质量比、水温等因素相关;爆炸越剧烈,产物粒径越小;爆炸场的最高温度为520 K,且冲击波超压衰减较快;现有条件下铝液碎化放热形成过热亚稳态水,短时间内快速汽化是爆炸事故发生的主要原因。
Abstract:
In order to reveal the formation reasons of the steam explosion accident in the metal casting process, a simulation equipment for the spontaneous explosion reaction of massive molten aluminum encountering water was established. The change characteritics of temperature and the propagation laws of shock wave for the molten aluminum-water explosion system were studied, and the products were collected and analyzed. The results showed that the triggering of explosion reaction was related to the relative mass ratio of aluminum-water, water temperature and other factors. The more violent the explosion, the smaller the size of the products. The maximum temperature of the explosion field was 520 K, and the attenuation of the shock wave overpressure was faster. Under the existing conditions, the overheating metastable water, which was formed by the fragmentation and heat release of molten aluminum, would vaporize rapidly in a short time was the main reason of the explosion accident.

参考文献/References:

[1]杨晓霞. 国内外铝工业现状及发展前景[J]. 有色金属加工, 2016,45(1): 4-7. YANG Xiaoxia. Present situation and prospect of aluminum industry at home and abroad[J]. Nonferrous Metal Processing, 2016,45(1): 4-7.
[2]康军伟, 张建辉, 曾宏凯. 国内外铝加工行业状况浅析[J]. 有色金属加工, 2017(6):1-5. KANG Junwei, ZHANG Jianhui, ZENG Hongkai. Analysis on situation of aluminum processing industry in domestic and overseas[J]. Nonferrous Metal Processing, 2017(6):1-5.
[3]邵正荣. 铝合金熔炼铸造安全生产[C]//第五届铝型材技术(国际)论坛, 2013.
[4]高波, 施光明, 姜华磊. 尿素合成塔爆炸事故机理的研究[J].中国安全生产科学技术, 2011, 7 (8) :73-78. GAO Bo, SHI Guangming, JIANG Hualei. The research of urea reactor explosion mechanism[J]. Journal of Safety Science and Technology, 2011, 7 (8) :73-78.
[5]TALEYARKHAN R P. Vapor explosion studies for nuclear and non-nuclear industries[J]. Nuclear Engineering and Design, 2005, 235(10):1061-1077.
[6]ANDERSON R P, ARMSTRONG D R. Experimental study of small scale explosions in an aluminum-water system[J]. Journal of Heat Transfer, 1981(19): 250-255.
[7]TALEYARKHAN R P, KIM S H, KNAFF C L. Fundamental studies on molten aluminum-water explosion prevention in direct-chill casting pits[J]. Journal of Light Metals, 2001(59) :793-798.
[8]袁明豪. 蒸汽爆炸相关现象机理的数值模拟研究[D]. 上海: 上海交通大学, 2008.
[9]周源. 蒸汽爆炸中熔融金属液滴热碎化机理及模型研究[D]. 上海: 上海交通大学,2014.
[10]PACHTER R T, EKENESK J M. Cause and prevention of explosives involving direct-chill casting of aluminum sheet ingot[J]. Journal of Light Metals, 2016(10):1085-1090.
[11]EKENES J M, SATHER T. Cause and prevention of explosions involving hot-top casting of aluminum extrusion ingot[J]. Journal of Light Metals, 2003(7): 687-693.
[12]吕中杰, 仝毅, 郭学永,等. 熔融铝液遇水爆炸机理实验研究[C]//第五届铝型材技术(国际)论坛, 2013.
[13]SHEN Z X, TONG Y, LYU Z J. Theoretical analysis of molten aluminum-and-water mixing and expansion work [J]. Binggong Xuebao/Acta Armamentarii, 2012 (33): 57-61.
[14]吕中杰, 王鹏, 黄风雷,等. 高温铝液遇水爆炸的冲击波效应[J]. 爆炸与冲击, 2013(S1): 54-58. LYU Zhongjie, WANG peng, HUANG Fenglei, et al. Shockwave effect of explosion about molten aluminum and coolant water[J]. Explosion and Shock waves, 2013(S1): 54-58.
[15]沈正祥, 吕中杰, 仝毅,等. 高温铝液与水混合过程热力学特性分析[J]. 材料工程, 2011(10): 19-22. SHEN Zhengxiang, LYU Zhongjie, TONG Yi, et al. A thermodynamic analysis on mixing progress of molten aluminum and water[J]. Journal of Materials Engineering, 2011(10): 19-22.
[16]辛琦. 熔融铝液遇水碎化分析及爆炸冲击波能量转化[D]. 北京: 北京理工大学, 2015.
[17]沈正祥, 李金柱, 吕中杰,等. 高温球体与水的沸腾传热特性研究[J]. 北京理工大学学报, 2013, 33 (5) : 445-449. SHEN Zhengxiang, LI Jinzhu, LYU Zhongjie, et al. Research on the characters of boiling heat transfer from high temperature sphere to water[J]. Transactions of Beijing Institute of Technology, 2013, 33 (5) : 445-449.
[18]PAGE F, CHAMBERLAIN A, GRIMES R. The safety of molten aluminum-lithium alloys in the presence of coolants[J]. Journal de Physique Colloques, 1987, 48(3): 63-73.

相似文献/References:

[1]纪庭超,李刚,李思琦.“2.20”鞍钢重型机械铸钢厂喷爆重大事故原因分析[J].中国安全生产科学技术,2013,9(8):110.[doi:10.11731/j.issn.1673-193x.2013.08.020]
 JI Ting chao,LI Gang,LI Si qi.Analysis on the "2.20" sand mold explosion accident in Anshan Steel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):110.[doi:10.11731/j.issn.1673-193x.2013.08.020]

备注/Memo

备注/Memo:
浙江省质量技术基础建设项目(20180119)
更新日期/Last Update: 2018-06-19