|本期目录/Table of Contents|

[1]陈旭芳,李云涛,帅健.水面LNG液池扩展模型的分析与对比研究[J].中国安全生产科学技术,2018,14(3):115-120.[doi:10.11731/j.issn.1673-193x.2018.03.017]
 CHEN Xufang,LI Yuntao,SHUAI Jian.Analysis and comparative study on liquid pool spread model for LNG on water surface[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(3):115-120.[doi:10.11731/j.issn.1673-193x.2018.03.017]
点击复制

水面LNG液池扩展模型的分析与对比研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年3期
页码:
115-120
栏目:
职业安全卫生管理与技术
出版日期:
2018-03-31

文章信息/Info

Title:
Analysis and comparative study on liquid pool spread model for LNG on water surface
文章编号:
1673-193X(2018)-03-0115-06
作者:
陈旭芳李云涛帅健
(中国石油大学(北京) 机械与储运工程学院,北京 102249)
Author(s):
CHEN Xufang LI Yuntao SHUAI Jian
(School of Mechanical and Transportation Engineering, China University of Petroleum(Beijing), Beijing 102249, China)
关键词:
LNG泄漏Fay模型FERC模型FLACS液池扩展
Keywords:
LNG leakage Fay model FERC model FLACS liquid pool spread
分类号:
X932;X937
DOI:
10.11731/j.issn.1673-193x.2018.03.017
文献标志码:
A
摘要:
为了评价在开阔水面上的液化天然气(LNG)火灾和蒸气云爆炸灾害后果,分析了LNG水面扩展动态过程;对比分析了Fay模型、FERC模型和计算流体力学软件FLACS的计算结果,探讨了LNG液池面积随时间的动态变化过程,分析了泄漏量、泄漏速率等参数对LNG液池扩展半径的影响;根据液池扩展模型的计算结果,确定了LNG液池的最大面积,并以此分析了LNG流淌火灾的辐射危害。研究结果表明:对于相同的泄漏条件,3种方法模拟的泄漏LNG水面扩展动态过程相似,一般情况下,FLACS模型,FERC模型和Fay模型所计算的最大液池半径依次增大;由于FERC模型与FLACS软件的模拟结果接近且偏于保守,故此在一般的工程应用时,采用FERC模型即可方便快捷地获得较为准确的结果。
Abstract:
In order to evaluate the consequence of fire and vapor cloud explosion for the liquefied natural gas (LNG) on the open water surface, the dynamic process of LNG spreading on the water surface was analyzed. The comparative analysis on the calculation results of Fay method, Federal Energy Regulatory Commission's (FERC) model and FLACS, a computational fluid dynamics (CFD) software was carried out, then the dynamic changing processes of LNG liquid pool area with time were discussed, and the influence of the leakage amount, the leakage rate and other parameters on the spread radius of LNG liquid pool was analyzed. According to the calculation results of the liquid pool spread model, the maximum area of LNG liquid pool was determined, and the thermal radiation hazard of LNG flowing fire was analyzed on this basis. The results showed that under the same leakage conditions, the dynamic processes of LNG spreading on the water surface simulated by the three methods were similar. Generally, the maximum liquid pool radius calculated by the FLACS, FERC model and Fay model increased in turn. The simulation results of FERC model were close to that of FLACS and more conservative, so the more accurate results could be obtained conveniently and rapidly by using FERC model in the general engineering application.

参考文献/References:

[1]BP. BP世界能源统计年鉴[R].英国: BP公司, 2017.
[2]庄学强,高孝洪,孙迪. 液化天然气船舶事故性泄漏扩散过程综述[J]. 中国航海, 2008, 31(3):280-283. ZHUANG Xueqiang,GAO Xiaohong,SUN Di. Research on Accidental Leakage and Diffusion Process of LNG Vessel [J]. Navigation of China, 2008, 31(3): 280-283.
[3]HISSONG D W. Keys to modeling LNG spills on water[J]. Journal of Hazardous Materials, 2007, 140(3): 465-477.
[4]FAY J A. Model of spills and fires from LNG and oil tankers[J]. Journal of Hazardous Materials, 2003, 96(2/3): 171-188.
[5]JOHNSON D W, CORNWELL J B. Modeling the release, spreading, and burning of LNG, LPG, and gasoline on water[J]. Journal of Hazardous Materials, 2007, 140(3): 535-540.
[6]SANDIA National Laboratories. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water[R]. SAND 2004-6258, 2004:12.
[7]GAVELLI F, BULLISTER E, KYTOMAA H. Application of CFD (fluent) to LNG spills into geometrically complex environments[J]. Journal of Hazardous Materials, 2008, 159(1): 158-168.
[8] 林小侦,于光认, 魏利军,等. 液化天然气在水面地面扩散对比研究[J]. 中国安全生产科学技术,2014,10(8): 86-90. LIN Xiaozhen, YU Guangren, WEI Lijun, et al. Comparative study of LNG dispersion on water and ground [J]. Journal of Safety Science and Technology, 2014, 10(8): 86-90.
[9]OKA H, OTA S. Evaluation of consequence assessment methods for pool fires on water involving large spills from liquefied natural gas carriers[J]. Journal of Marine Science and Technology, 2008, 13(2): 178-188.
[10]ABS Consulting Inc. Consequence assessment methods for incidents involving releases from liquefied natural gas carriers [R].Houston: ABS Consulting Risk Consulting Inc.,2004.
[11]Federal Energy Regulatory Commission. Notice of availability of staff’s responses to comments on the consequences assessment methods for incidents involving releases form liquefied natural gas carriers[R]. FERC, 2004.
[12]ICHARD D, HANSEN O R, MIDDHA P, et al. CFD computations of liquid Hydrogen releases[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17380-17389.
[13]RAJ P K. LNG fires: A review of experimental results, models and hazard prediction challenges[J]. Journal of Hazardous Materials, 2007, 140(3):444-464.
[14]何思念,常华伟,文科,等.液化天然气泄漏和水面扩散过程模拟[J].化工学报,2015,66(S2):213-219. HE Sinian, CHANG Huawei, WEN Ke, et al. Mathematical modeling of LNG spills and pool spreading on water[J]. CIESC Journal,2015,66(S2):213-219.
[15]LI Yuntao, HUANG Hong, WANG Zheng, et al. An experimental and modeling study of continuous liquid fuel spill fires on water[J]. Journal of Loss Prevention in the Process Industries,2015,33(33): 250-257.
[16]BLINOV V I, KHUDYAKOV G N. Diffusion Burning of Liquid[J]. Diffusion Burning of Liquids, 1961, 762.
[17] HURLEY M J, GOTTUK D T, JR J R H,et al. SFPE Handbook of Fire Protection Engineering[M]. Springer New York, 2016: 2612-2614.
[18]傅智敏, 黄金印, 付敏. 烃类流体火灾伤害破坏作用定量分析[J]. 中国安全科学学报, 2008, 18(9):29-36. FU Zhimin, HUANG Jinyin, FU Min. Quantitative analysis of thermal radiation damaging effects caused by liquid or gaseous hydrocarbon fires[J]. China Safety Science Journal, 2008,18(9):29-36.

相似文献/References:

备注/Memo

备注/Memo:
国家重点研发计划项目(2017YFC0805801);中国石油大学(北京)科研基金项目(2462015YJRC029)
更新日期/Last Update: 2018-04-11