|本期目录/Table of Contents|

[1]倩,张宏,张克政,等.走滑断层作用下X80管道设计应变规律和神经网络预测[J].中国安全生产科学技术,2018,14(2):26-32.[doi:10.11731/j.issn.1673-193x.2018.02.004]
 ZHENG Qian,ZHANG Hong,ZHANG Kezheng,et al.Design strain laws and neural network prediction of X80 pipeline under effect of strike-slip fault[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(2):26-32.[doi:10.11731/j.issn.1673-193x.2018.02.004]
点击复制

走滑断层作用下X80管道设计应变规律和神经网络预测
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年2期
页码:
26-32
栏目:
学术论著
出版日期:
2018-02-28

文章信息/Info

Title:
Design strain laws and neural network prediction of X80 pipeline under effect of strike-slip fault
文章编号:
1673-193X(2018)-02-0026-07
作者:
1张宏1张克政2刘啸奔1夏梦莹1吴锴1王宝栋1
(1. 中国石油大学(北京) 机械与储运工程学院,北京 102249;2. 中海石油气电集团有限责任公司,北京 100028)
Author(s):
ZHENG Qian1 ZHANG Hong1 ZHANG Kezheng2 LIU Xiaoben1 XIA Mengying1 WU Kai1 WANG Baodong1
(1. College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China; 2. CNOOC Gas and Power Group, Beijing 100028, China)
关键词:
走滑断层埋地X80管道有限元方法BP神经网络设计应变
Keywords:
strike-slip fault buried X80 pipeline finite element method BP neural network design strain
分类号:
X937;TE973.1
DOI:
10.11731/j.issn.1673-193x.2018.02.004
文献标志码:
A
摘要:
走滑断层是埋地管道常见的地质灾害威胁,断层作用下管道会发生较大的拉压应变而失效。为得到X80管道的设计应变,基于有限元方法建立了走滑断层作用下管道的应变响应数值计算模型,模型使用壳单元模拟管道,非线性弹簧单元模拟土壤约束,采用西二线实际工程的管道应变影响参数范围,计算了管道的设计应变;为预测管道的设计应变值,基于以上参数化分析得到的4 817组设计应变结果,采用人工神经网络建立了管道设计应变预测模型。结果表明:该神经网络模型预测结果的最大相对误差小于10%,预测准确性良好,且该方法具有较高的计算效率,可以为断层作用下埋地管道的应变设计与评估提供参考。
Abstract:
The strike-slip fault is a common geological disaster threat to the buried pipeline, and the pipeline can be destructed due to the large tensile and compressive strain caused by the effect of fault. Based on the finite element method, a numerical calculation model on the strain response of pipeline under the effect of strike-slip fault was established to calculate the design strain of X80 pipeline. In the model, the pipeline was simulated by the shell elements, and the soil constraint was simulated by the nonlinear spring elements. The design strain of pipeline was calculated by using the range of influence factors for the pipeline strain in the practical engineering of the Second West to East Gas Pipeline Project. To predict the design strain of pipeline, a prediction model of design strain for pipeline was established by using the artificial neural network based on 4 817 groups of design strain results obtained by the parametric analysis. The results showed that the maximum relative error of the prediction results by the neural network model were less than 10%, which means a good prediction accuracy. Otherwise, this method has a high calculation efficiency, and it can provide the reference for the strain design and evaluation of the buried pipeline under the effect of fault.

参考文献/References:

[1] 刘啸奔,陈严飞,张宏,等.跨断层区X80钢管道受压时的设计应变预测[J].天然气工业,2014,34(12):123-130.LIU Xiaoben, CHEN Yanfei,ZHANG Hong,et al. Prediction on the design strain of the X80 steel pipelines across active faults under stress[J]. Natural Gas Industry, 2014,34(12):123-130.
[2]NEWMARK NM, HALL WJ. Pipeline design to resist large fault displacement[C]// Ann Arbor. Proceedings of the U.S. National Conference On Earthquake Engineering, 1975: 799-807.
[3] KENNEDY R P, DARROW A W, WILLIAMSON R A. Fault movement effects on buried oil pipeline[J]. Transport Engineering Journal, 1977, 103(5): 617-633.
[4]韩银杉,张宏.走滑断层作用下管道应变解析计算方法的适用性[J].油气储运,2016,35(12):1329-1336.HAN Yinshan, ZHANG Hong. Applicability of analytical calculation methods on the pipeline strain under the effect of strike-slip fault[J]. Oil & Gas Storage and Transportation, 2016,35(12):1329-1336.
[5]KARAMITROS D K, BOUCKOVALAS G D, KOURETZIS G P. Stress analysis of buried steel pipelines at strike-slip fault crossings[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3): 200-211.
[6]刘啸奔,张宏,李勐,等.断层作用下埋地管道应变分析方法研究进展[J].油气储运,2016,35(8):799-807.LIU Xiaoben, ZHANG Hong, LI Meng, et al. Research progress of strain analysis methods for buried pipelines under faulting process. Oil & Gas Storage and Transportation, 2016, 35(8):799-807.
[7] LIU X B,ZHANG H,HAN Y S,et al. A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings[J]. Journal of Natural Gas Science and Engineering, 2016, 32(32): 465-475.
[8]SHOKOUHI S K, DOLATSHAH A, GHOBAKHLOO E. Seismic strain analysis of buried pipelines in a fault zone using hybrid FEM-ANN approach[J]. Earthquakes and Structures, 2013, 5(4): 417-438.
[9]李剑楠. 基于人工神经网络模型的埋地管道可靠性研究[D]. 唐山:华北理工大学, 2016.
[10]陶翠翠.改进BP神经网络在埋地金属管道腐蚀速率预测中的应用[C]//第七届沈阳科学学术年会暨浑南高新技术产业发展论坛论文集,沈阳,2010:453-458.
[11]冯志刚. 输油管道的腐蚀检测与剩余强度评价[D]. 西安:西安石油大学,2007.
[12] XU Wenzheng, LI Chunbao, CHOUNG J, et al. Corroded pipeline failure analysis using artificial neural network scheme[J]. Advances in Engineering Software, 2017, 112: 255-266.
[13] 王原嵩. 基于GA-BP神经网络的海底腐蚀管道极限承载力研究[D]. 大连:大连理工大学, 2009.
[14] 汪送,王瑛,李超.BP神经网络在航空机务人员本质安全程度评价中的应用[J].中国安全生产科学技术,2010,6(6):35-39.WANG Song, WANG Ying, LI Chao. Application of BP neural network in inherent safety degree evaluation of aviation maintenance personnel[J]. Journal of Safety Science and Technology, 2010, 6(6):35-39.
[15]王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013. [16]管志川, 胜亚楠, 许玉强,等. 基于PSO优化BP神经网络的钻井动态风险评估方法[J]. 中国安全生产科学技术,2017, 13(8):5-11. GUAN Zhichuan, SHENG Yanan, XU Yuqiang, et al. Dynamic risk assessment method of drilling based on PSO optimized BP neural network[J]. Journal of Safety Science and Technology, 2017, 13(8):5-11.
[17]飞思达科技产品研发中心. 神经网络理论与MATLAB7实现[M]. 北京: 电子工业出版社, 2005.
[18]赵弘,周瑞祥,林廷圻.基于Levenberg-Marquardt算法的神经网络监督控制[J].西安交通大学学报,2002,36(5):523-527. ZHAO Hong, ZHOU Ruixiang, LIN Tingqi. Neural network supervised control based on Levenberg-Marquardt Algorithm[J]. Journal of Xian Jiaotong University, 2002, 36(5):523-527.

相似文献/References:

[1]吴锴,张宏,刘啸奔,等.走滑断层位移作用下X80天然气管道的管沟合理尺寸分析[J].中国安全生产科学技术,2017,13(6):81.[doi:10.11731/j.issn.1673-193x.2017.06.013]
 WU Kai,ZHANG Hong,LIU Xiaoben,et al.Analysis on rationality of trench geometrical size for buried X80 natural gas pipeline under strike-slip fault displacement[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(2):81.[doi:10.11731/j.issn.1673-193x.2017.06.013]

备注/Memo

备注/Memo:
国家重点研发计划课题(2016YFC0802105)
更新日期/Last Update: 2018-03-19