|本期目录/Table of Contents|

[1]刘洪斌,牟浩.加砂压裂中固体支撑剂对压裂管道的冲蚀磨损研究[J].中国安全生产科学技术,2018,14(1):87-94.[doi:10.11731/j.issn.1673-193x.2018.01.014]
 LIU Hongbin,MU Hao.Study on erosion wear of fracturing pipe caused by solid proppant in sand fracturing[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(1):87-94.[doi:10.11731/j.issn.1673-193x.2018.01.014]
点击复制

加砂压裂中固体支撑剂对压裂管道的冲蚀磨损研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年1期
页码:
87-94
栏目:
职业安全卫生管理与技术
出版日期:
2018-01-31

文章信息/Info

Title:
Study on erosion wear of fracturing pipe caused by solid proppant in sand fracturing
文章编号:
1673-193X(2018)-01-0087-08
作者:
刘洪斌牟浩
(西南石油大学 机电工程学院,四川 成都 610500)
Author(s):
LIU Hongbin MU Hao
(School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu Sichuan 610500, China)
关键词:
冲蚀高压管汇三通数值模拟
Keywords:
erosion high pressure manifold tee numerical simulation
分类号:
X937;TE931
DOI:
10.11731/j.issn.1673-193x.2018.01.014
文献标志码:
A
摘要:
为研究压裂高压管汇在大排量携砂液输送过程中的管壁冲蚀磨损问题,应用CFD方法及Fluent软件,建立了高压管汇主要管件三通管的冲蚀模型,基于数值模拟计算研究了冲蚀发生机理及位置,探讨了高压管汇的冲蚀特点。结果表明:压裂液流动方向变化区域存在严重的冲蚀现象,如主管与支管连接处;三通主管下游段,内壁冲蚀主要是来自支管的固体支撑剂在运动方向改变时对内壁低角度切削;管汇里越靠近井口的三通因为压裂液流量增加,主管下游段两侧冲蚀越严重。该研究结果可为管汇设计制造、关键部位检测等提供技术参考。
Abstract:
In order to study the erosion wear of pipe wall during the transportation process of sand carrying fluid with large flow rate in the fracturing high pressure manifold, an erosion model of tee as the main pipe fitting of high pressure manifold was established by using the CFD method and Fluent software. The occurrence mechanism and positions of erosion were studied based on the numerical simulation calculation, and the erosion characteristics of high pressure manifold were discussed. The results showed that there existed serious erosion phenomenon in the area where the flow direction of fracturing fluid changed, such as the joint of main pipe and branch pipe. In the downstream section of the tee main pipe, the erosion of inner wall was mainly caused by the low angle cutting on the inner wall when the movement direction of solid proppant from the branch pipe changed. The closer the tee in the manifold to the wellhead, the more serious the erosion on both sides of the downstream section of main pipe due to the increasing flow rate of fracturing fluid. The results can provide the technical reference for the design and manufacture of manifolds, as well as the detection of key positions.

参考文献/References:

[1]练章华,陈新海,林铁军,等.排砂管线弯接头的冲蚀机理研究 [J].西南石油大学学报(自然科学版),2014,36(1):150-156. LIAN Zhanghua,CHEN Xinhai,LIN Tiejun, et al. Study on erosion mechanism of bending joint in blooey line [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014,36(1):150-156.
[2]孙秉才,樊建春,温东,等. 高压对高压管汇冲蚀磨损的影响 [J].润滑与密封,2014,39(4):11-14. SUN Bingcai,FAN Jianchun,WEN Dong,et al. Effect of high pressure on erosion wear of high pressure pipe manifold [J]. Lubrication Engineering, 2014,39(4):11-14.
[3]李介普,幺成,李翔. 输油管道冲蚀磨损数值模拟研究[J]. 化工技术与开发,2016,45(6):66-68. LI Jiepu, YAO Cheng,LI Xiang.Numerical simulation investigation on erosion of oil pipeline [J]. Technology & Development of Chemical Industry, 2016,45(6): 66-68.
[4]吴星. 3000型压裂车高压管汇疲劳强度仿真研究[J]. 制造业自动化,2015,37(14):144-147. WU Xing. The fatigue strength simulation and research of 3000HP fracturing truck's high-pressure manifold [J].Manufacturing Automation.2015,37(14):144-147.
[5]金雪梅,张祥来,廖浩,等.加砂压裂过程中高压管汇失效爆裂分析 [J].安全,2017,38(1):17-18. JIN Xuemei, ZHANG Xianglai, LIAO Hao, et al. Failure analysis of high-pressure manifold in sand fracturing process[J].Safety, 2017,38(1):17-18.
[6]谢永金,樊建春,张宏,等.页岩气开发用高压管汇损伤机理及检测技术[J].石油机械,2011,39(S1):109-112. XIE Yongjin, FAN Jianchun, ZHANG Hong,et al. Damage mechanism and detection technology of high pressure pipe gap for shale gas development [J]. China Petroleum Machinery, 2011,39(S1):109-112.
[7]张继信,樊建春,汪彤,等.压裂液对高压弯管冲蚀作用的数值分析[J].润滑与密封, 2013, 38(4):27-31. ZHANG Jixin, FAN Jianchun, WANG Tong, et al. Research on erosion wear of fracturing fluid on high pressure elbow [J]. Lubrication Engineering. 2013, 38(4):27-31.
[8]SOLNORDAL C B, CHONG Y W, BOULANGER J. An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow[J]. Wear, 2015, S336-337:43-57.
[9]PEREIRA G C, SOUZA F J D, MARTINS D A D M. Numerical prediction of the erosion due to particles in elbows[J]. Powder Technology, 2014, 261(7):105-117.
[10]PARSI M, NAJMI K, NAJAFIFARD F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. Journal of Natural Gas Science & Engineering, 2014, 21:850-873.
[11]SHIRAZI S A, SHADLEY J R, MCLAURY B S, et al. A procedure to predict solid particle erosion in elbows and tees[J]. Journal of Pressure Vessel Technology, 1995, 117(1):45-52.
[12]LU Q Q, FONTAINE J R, AUBERTIN G. A lagrangian model for solid particles in turbulent flows[J]. International Journal of Multiphase Flow, 1993, 19(2):347-367.
[13]ZHANG Y, MCLAURY B S, SHIRAZI S A. Improvements of particle Near-Wall velocity and erosion predictions using a commercial CFD code[J]. Journal of Fluids Engineering, 2009, 131(3) :303-312.
[14]IACOVIDES H, LAUNDER B E. Computational fluid dynamics applied to internal gas-turbine blade cooling: a review[J]. International Journal of Heat & Fluid Flow, 1995, 16(6):454-470.
[15]张继信,樊建春,詹先觉,等. 水力压裂工况下42CrMo材料冲蚀磨损特性研究[J].石油机械,2012,40(4):100-103. ZHANG Jixin,FAN Jianchun,ZHAN Xianjue,et al. Research on the erosion wear characteristics of 42CrMo steel in hydraulic fracture conditions[J]. China Petroleum Machinery, 2012,40(4):100-103.
[16]FORDER A, THEW M, HARRISION D. A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear, 1998, 216(2):184-193.
[17]GRANT G,TABAKOFF W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of Aircraft, 2012, 12(5):471-478.
[18]WALLANCE M S. CFD-based erosion modeling of simple and complex geometries[D].Glasgow: The University of Strathclyde,2001.
[19]ZHANG J X, BAI Y Q, KANG J, et al. Failure analysis and erosion prediction of tee junction in fracturing operation[J]. Journal of Loss Prevention in the Process Industries, 2017, 46:94-107.
[20]ARABNEJAD H, MANSOURI A, SHIRAZI S A, et al. Development of mechanistic erosion equation for solid particles[J]. Wear, 2015, 332-333:1044-1050.
[21]丁矿,朱宏武,张建华,等. 直角弯管内液固两相流固体颗粒冲蚀磨损分析[J].油气储运,2013,32(3):241-246. DING Kuang, ZHU Hongwu, ZHANG Jianhua,et al. Erosion wear analysis of solid particles in liquid-solid two-phase flow of right-angle bend pipe[J]. Oil & Gas Storage and Transportation, 2013,32(3):241-246.
[22]赵懿珺,贺益英.直角Z形组合双弯管流动特性的研究[J].水利学报,2006,37(7):778-783. ZHAO Yijun,HE Yiying. Study on flow characteristics of right-angled Z-shaped double bend tubes[J]. Journal of Hydraulic Engineering,2006,37(7):778-783.
[23]全国石油钻采设备和工具标准化技术委员会.石油钻采高压管汇的使用、维护、维修与检测: SY/T6270-2012[S].北京:石油工业出版社,2012.
[24]张永虎.高压管汇冲蚀缺陷的超声波检测 [D].西安:西安石油大学,2015.

相似文献/References:

[1]王彦然,樊建春,杨思齐,等.高压管汇磁致伸缩导波缺陷检测模拟研究[J].中国安全生产科学技术,2020,16(3):18.[doi:10.11731/j.issn.1673-193x.2020.03.003]
 WANG Yanran,FAN Jianchun,YANG Siqi,et al.Simulation study on detection of magnetostrictive guided wave defects in highpressure manifold[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(1):18.[doi:10.11731/j.issn.1673-193x.2020.03.003]
[2]周兰,张红,陈文康,等.页岩气压裂管汇弯头的冲蚀磨损影响分析*[J].中国安全生产科学技术,2020,16(10):53.[doi:10.11731/j.issn.1673-193x.2020.10.008]
 ZHOU Lan,ZHANG Hong,CHEN Wenkang,et al.Analysis on erosion wear effect of fracturing manifold elbow in shale gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(1):53.[doi:10.11731/j.issn.1673-193x.2020.10.008]

备注/Memo

备注/Memo:
四川省科技厅资助项目(2015SZ0008);四川省教育厅资助项目(13ZA0179)
更新日期/Last Update: 2018-02-12