|本期目录/Table of Contents|

[1]岳基伟,王兆丰.基于T-P模型的高低温环境型煤对甲烷吸附性能预测[J].中国安全生产科学技术,2018,14(1):77-81.[doi:10.11731/j.issn.1673-193x.2018.01.012]
 YUE Jiwei,WANG Zhaofeng.Prediction of methane adsorption performance for briquette in high and low temperature environment based on T-P model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(1):77-81.[doi:10.11731/j.issn.1673-193x.2018.01.012]
点击复制

基于T-P模型的高低温环境型煤对甲烷吸附性能预测
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年1期
页码:
77-81
栏目:
职业安全卫生管理与技术
出版日期:
2018-01-31

文章信息/Info

Title:
Prediction of methane adsorption performance for briquette in high and low temperature environment based on T-P model
文章编号:
1673-193X(2018)-01-0077-05
作者:
岳基伟1王兆丰12
(1.河南理工大学 安全科学与工程学院,河南 焦作 454000; 2.煤矿灾害预防与抢险救灾教育部工程研究中心,河南 焦作 454000)
Author(s):
YUE Jiwei1 WANG Zhaofeng12
(1. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China; 2. Engineering Center of Mine Disaster Prevention and Rescue, Jiaozuo Henan 454000, China)
关键词:
高低温环境T-P模型吸附等温线预测抛物线关系
Keywords:
high and low temperature environment T-P model adsorption isotherm prediction parabolic relation
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2018.01.012
文献标志码:
A
摘要:
为预测深部或浅部煤层不同温度和不同压力条件下的吸附等温线,选用型煤以高低温试验装置为依托,测试了温度为293.15,273.15,253.15 K的吸附等温线。基于T-P模型,利用等温吸附曲线对公式中的参数进行了合理的求解,探讨了一种简单的煤对瓦斯吸附等温线预测方法。研究表明:同一吸附平衡压力下,温度越低,煤的瓦斯吸附量越大;ε-ω吸附特征曲线与温度无关,呈现对数的形式;参数m和拟合度R2满足抛物线的关系,存在拟合效果最好时的参数m值。采用T-P模型预测得到的吸附等温线与实测的吸附等温线无论是趋势还是定量结果均十分吻合,其相对误差不超过5%。
Abstract:
In order to predict the adsorption isotherms of deep or shallow coal seams under different temperatures and pressures, the adsorption isotherms at different temperatures (293.15 K, 273.15 K and 253.15 K) were measured, which relied on the high and low temperature testing device with selecting the briquette. Based on the T-P model, the parameters in the formula were solved reasonably by using the adsorption isotherm curves, and a simple method for predicting the gas adsorption isotherms of coal was discussed. The results showed that under the same adsorption equilibrium pressure, the lower the temperature, the greater the adsorption quantity of coal. The ε-ω adsorption characteristic curve was independent of temperature, which appeared a logarithmic form. The parameter m and the fitting degree R2 satisfied with the parabolic relation, and there existed a value of parameter m when the fitting effect was the best. The adsorption isotherms obtained by the prediction using the T-P model agreed well with the measured adsorption isotherms both in the trend and the quantity, with the relative error without exceeding 5%.

参考文献/References:

[1]苏现波,林萌,林晓英,等. 吸附势理论在煤层甲烷吸附中的应用[J]. 中国煤层气,2006,3(2): 28-30. SU Xianbo, LIN Meng, LIN Xiaoying, et al. Study of methane adsorption on coal with adsorption potential theory[J]. China Coal Bed Methane, 2006, 3(2): 28-30.
[2]钟玲文,郑玉柱,员争荣,等. 煤在温度和压力综合影响下的吸附性能及气含量预测[J]. 煤炭学报,2002,27(6):581-585. ZHONG Lingwen, ZHENG Yuzhu, YUAN Zhengrong, et al. The adsorption capability of coal under integrated influence of temperature and pressure and predicted of content quantity of coal bed gas [J]. Journal of China Coal Society, 2002, 27(6):581-585.
[3]赵振国.吸附作用应用原理[M].北京:化学工业出版社, 2005.
[4]岳高伟,王兆丰,康博,等. 基于吸附热理论的煤—甲烷高低温等温吸附线预测[J]. 天然气地球科学,2015,26(1):148-153. YUE Gaowei, WANG Zhaofeng, KANG Bo, et al. Prediction for isothermal adsorption curve of coal/ CH4 based on adsorption heat theory[J]. Natural Gas Geoscience, 2015, 26(1):148-153.
[5]陈绍杰,陈学习,柏松,等. 基于吸附势理论的煤—甲烷吸附等温线预测[J]. 华北科技学院学报,2009,6(4):30-32. CHEN Shaojie, CHEN Xuexi, BAI Song, et al. Prediction for isothermal adsorption curve of coal/CH4 based on adsorption potential theory[J]. Journal of North China Institute of Science and Technology, 2009, 6(4): 30-32.
[6]姜伟,吴财芳,姜玮,等. 吸附势理论在煤层气吸附解吸研究中的应用[J]. 煤炭科学技术,2011,39(5):102-104. JIANG Wei, WU Caifang, JIANG Wei, et al. Application of adsorption potential theory to study on adsorption-desorption of coalbed methane[J]. Coal Science and Technology, 2011, 39(5): 102-104.
[7]苏现波,林晓英,赵孟军,等. 储层条件下煤吸附甲烷能力预测[J]. 天然气工业,2006,26(8):34-36. SU Xianbo, LIN Xiaoying, ZHAO Mengjun, et al. Prediction on coal adsorption capacity under reservoir conditions[J]. Natural Gas Industry, 2006, 26(8): 34-36.
[8]蔺亚兵,马东民,刘钰辉,等. 温度对煤吸附甲烷的影响实验[J]. 煤田地质与勘探,2012,40(6):24-28. LIN Yabing, MA Dongmin, LIU Yuhui, et al. Experiment of the influence of temperature on coal bed methane adsorption[J]. Coal Geology and Exploration, 2012, 40(6): 24-28.
[9]柴琳,吴世跃,牛熠. 基于吸附势理论的煤吸附超临界甲烷研究[J]. 煤矿安全,2017,48(1):21-23,27. CHAI Lin,WU Shiyue,NIU Yu. Study on coal adsorbing supercritical methane based on adsorption potential theory[J]. Safety in Coal Mines, 2017, 48(1):21-23, 27.
[10]马向攀,王兆丰,任浩洋. 基于吸附势理论的低温环境煤甲烷吸附等温线预测[J]. 煤矿安全,2017,48(5):22-25. MA Xiangpan, WANG Zhaofeng, REN Haoyang. Prediction for CH4 isothermal adsorption curve of coal at low temperature based on adsorption potential theory[J]. Safety in Coal Mines, 2017, 48(5):22-25.
[11]胡千庭,邹银辉,文光才,等.瓦斯含量法预测突出危险新技术[J].煤炭学报,2007,32(3):276-280. HU Qianting, ZOU Yinhui, WEN Guangcai, et al. New technology of outburst danger prediction by gas content[J]. Journal of China Coal Society, 2007, 32(3):276-280.
[12]TANG Xu, LI Zhiqiang, RIPEPI NINO, et al. Temperature-dependent diffusion process of methane through dry crushed coal[J]. Journal of Natural Gas Science and Engineering, 2015, 22:609-617.
[13]李志强,成强,段正鹏,等. 不同温压柱状煤芯瓦斯吸附饱和度和进扩散时间的确定[J].中国安全生产科学技术,2017,13(7):92-99. LI Zhiqiang, CHENG Qiang, DUAN Zhengpeng, et al. Determination of adsorption saturation and diffusion time of gas in cylindrical coal core under different temperatures and pressures[J]. Journal of Safety Science and Technology, 2017, 13(7):92-99.
[14]聂百胜,杨涛,李祥春,等. 煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报,2013,42(6):975-980. NIE Baisheng, YANG Tao, LI Xiangchun, et al. Reaearch on diffusion of methane in coal particles[J]. Journal of China University of Mining and Technology, 2013, 42(6):975-980.
[15]王兆丰,岳高伟,康博,等.低温环境对煤的瓦斯解吸抑制效应试验[J].重庆大学学报,2014,37(9):106-112,143. WANG Zhaofeng, YUE Gaowei, KANG Bo, et al. Gas desorption inhibitory effect of coal in low temperature environment[J]. Journal of Chongqing University, 2014, 37(9): 106-112, 143.
[16]AMANKWAH KAG, SCHWAKZ J A. A modified approach for estimating pseudo-vapor pressures in the application of the Dubinin-Astakhov equation[J]. Carbon, 1995, 33(9):1313-1319.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51274090,51704100);河南省高校科技创新团队计划(17IRSTHN030);河南省基础与前沿技术研究项目(162300410038)
更新日期/Last Update: 2018-02-12