|本期目录/Table of Contents|

[1]李胜,等.钻孔间距对水力压裂促抽煤层瓦斯的影响[J].中国安全生产科学技术,2018,14(1):70-76.[doi:10.11731/j.issn.1673-193x.2018.01.011]
 LI Sheng,REN Yanping,et al.Influence of spacing between boreholes on hydraulic fracturing to enhance coal seam gas extraction[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(1):70-76.[doi:10.11731/j.issn.1673-193x.2018.01.011]
点击复制

钻孔间距对水力压裂促抽煤层瓦斯的影响
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年1期
页码:
70-76
栏目:
职业安全卫生管理与技术
出版日期:
2018-01-31

文章信息/Info

Title:
Influence of spacing between boreholes on hydraulic fracturing to enhance coal seam gas extraction
文章编号:
1673-193X(2018)-01-0070-07
作者:
李胜1 2任延平1范超军1杨振华1罗明坤1兰天伟1
(1.辽宁工程技术大学 矿业学院,辽宁 阜新 123000;2.河南理工大学 深井瓦斯抽采与围岩控制技术国家地方联合工程实验室,河南 焦作 454003)
Author(s):
LI Sheng1 2 REN Yanping1 FAN Chaojun1 YANG Zhenhua1 LUO Mingkun1 LAN Tianwei1
(1. College of Mining, Liaoning Technical University, Fuxin Liaoning 123000, China; 2. State and Local Joint Engineering Laboratory for Gas extraction and Ground Control of Deep Mines, Henan Polytechnic University, Jiaozuo Henan 454003, China)
关键词:
水力压裂瓦斯抽采煤层增透钻孔间距流固耦合模型
Keywords:
hydraulic fracturing gas extraction coal seam permeability enhancement spacing between boreholes fluid-solid coupled model
分类号:
X913.3; TD712
DOI:
10.11731/j.issn.1673-193x.2018.01.011
文献标志码:
A
摘要:
针对定量确定合理钻孔间距困难问题,基于损伤力学和多场耦合理论,建立了水力压裂和瓦斯抽采的煤层流固耦合模型,包括和水运移场、应力场以及孔隙度、渗透率演化方程,并采用Comsol联合Matlab求解,研究了不同钻孔间距时压裂和抽采过程中煤层弹模、损伤值、渗透率、瓦斯压力、抽采量和压裂贯通时间的变化规律。结果表明:耦合模型可较准确地模拟煤层水力压裂和瓦斯抽采过程;压裂贯通时间与钻孔间距呈指数增长关系;在马堡煤矿,当钻孔间距为4~8 m时,压裂损伤区在抽采孔贯通,渗透率呈“n”型曲线,瓦斯抽采后,瓦斯压力迅速下降,抽采有效区随间距的增加而增大;当钻孔间距为9~12 m时,压裂损伤区未贯通,煤层渗透率呈“m”型曲线,抽采有效区随间距的增加而减小,与间距4~8 m相比,瓦斯抽采量较小。
Abstract:
Aiming at the problem that it is difficult to quantitatively determine the reasonable spacing between boreholes, a coal seam fluid-solid coupled model of hydraulic fracturing and gas extraction was established based on the damage mechanics and multi-field coupling theory, which included the equations of gas and water migration field, stress field and evolution of porosity and permeability. Through the solution by using Comsol combined with Matlab, the variation laws of coal seam elastic modulus, damage value, permeability, gas pressure, extraction amount and fracture breakthrough time during the fracturing and extraction processes with different spacing between boreholes were studied. The results showed that the coupled model can simulate the hydraulic fracturing and gas extraction processes of coal seam accurately, and the fracture breakthrough time increased exponentially with the spacing between boreholes. Under the conditions of Mabao coal mine, when the spacing between boreholes was 4-8 m, the fracture damage zone connected at the extraction borehole, the permeability presented a 'n' type curve, and after the gas extraction, the gas pressure dropped rapidly, and the extraction effective area increased with the increase of the spacing between boreholes. When the spacing between boreholes was 9-12 m, the fracture damage zone did not connect, the permeability presented a 'm' type curve, the extraction effective area decreased with the increase of the spacing between boreholes, and the gas extraction amount was smaller than that when the spacing between boreholes was 4-8 m.

参考文献/References:

[1]BJERRUM L, NASH J, KENNARD R M, et al. Hydraulic fracturing in field permeability testing[J]. Geotechnique, 1972, 22(2): 319-332.
[2]王耀锋, 何学秋, 王恩元, 等. 水力化煤层增透技术研究进展及发展趋势[J]. 煤炭学报, 2014, 39(10): 1945-1955. WANG Yaofeng, HE Xueqiu, WANG Enyuan, et al. Research progress and development tendency of the hydraulic technology for increasing the permeability of coal seams[J]. Journal of China Coal Society, 2014, 39(10): 1945-1955.
[3]康红普, 冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术, 2017, 45(1): 1-9. KANG Hongpu, FENG Yanjun. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology, 2017, 45(1):1-9.
[4]余陶,卢平,朱贵旺,等. 穿层钻孔水力压裂强化抽采瓦斯消突技术应用研究[J]. 安全与环境学报, 2010, 10(6): 172-175. YU Tao, LU Ping, ZHU Guiwan, et al. Study on enhanced gas drainage by fracture in cross-measure boreholes[J]. Journal of Safety and Environment, 2010, 10(6): 172-175.
[5]袁亮, 林柏泉, 杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术, 2015, 43(1): 45-49. YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015, 43(1): 45-49.
[6]周世宁. 水力压裂煤层抽放瓦斯的理论分析[J]. 煤矿安全, 1980(5):12-16. ZHOU Shining. Theoretical analysis of gas drainage from virgin coal seams by the help of hydraulic fracturing[J]. Safety in Coal Mines ,1980(5):12-16.
[7]李国旗, 叶青, 李建新, 等. 煤层水力压裂合理参数分析与工程实践[J]. 中国安全科学学报, 2010, 20(12): 73-78. LI Guoqi, YE Qing, LI Jianxin, et al. Theoretical analysis and practical study on reasonable water pressure of hydro-fracturing technology[J]. China Safety Science Journal, 2010, 20(12):73-78.
[8]吴迪祥, 赵学孟, 郭恩昌. 水力压裂裂缝几何形态的数值模拟[J]. 石油钻采工艺, 1986, 8(6):59-65. WU Dixiang, ZHAO Xuemeng, GUO Enchang. Numerical simulation of geometrical shape of hydraulic fracture [J]. Oil Drilling & Production Technology, 1986, 8(6): 59-65.
[9]闫金鹏, 刘泽功, 姜秀雷, 等. 高瓦斯低透气性煤层水力压裂数值模拟研究[J]. 中国安全生产科学技术, 2013, 9(8): 27-32. YAN Jinpeng, LIU Zegong, JIANG Xiulei, et al. Numerical simulation on hydraulic fracturing procedure of coal seam with high gas and low air permeability[J]. Journal of Safety Science and Technology, 2013, 9(8): 27-32.
[10]王杏尊, 刘文旗, 孙延罡, 等. 煤层气井压裂技术的现场应用[J]. 石油钻采工艺,2001,23(2):58-61,85. WANG Xingzun, LIU Wenqi, SUN Yangang, et al. Field testing of fracturing technology in coal formed gas well [J]. Oil Drilling & Production Technology, 2001, 23(2): 58-61,85.
[11]李润芝, 梁冰, 孙维吉, 等. 顺层钻孔瓦斯抽采半径及布孔间距试验研究[J]. 中国安全科学学报, 2016, 26(10): 133-138. LI Runzhi, LIANG Bing, SUN Weiji, et al. Experimental study on both gas drainage radius and bedding borehole space[J]. China Safety Science Journal, 2016, 26(10): 133-138.
[12]胡杰, 孙臣. 穿层水力冲孔措施在低透煤层中有效影响半径效果考察[J].中国安全生产科学技术,2017,13(10):48-52. HU Jie, SUN Chen. Effect inspection on effective impact radius of hydraulic flushing measures by perforated drilling holes in low permeability coal seam[J]. Journal of Safety Science and Technology, 2017, 13(10): 48-52.
[13]范超军, 李胜, 罗明坤, 等. 基于流-固-热耦合的深部煤层气抽采数值模拟[J]. 煤炭学报, 2016, 41(12): 3076-3085. FAN Chaojun, LI Sheng, LUO Mingkun, et al. Deep CBM extraction numerical simulation based on hydraulic-mechanical-thermal coupled model[J]. Journal of China Coal Society, 2016, 41(12): 3076-3085.
[14]李胜, 毕慧杰, 范超军, 等. 基于流固耦合模型的穿层钻孔瓦斯抽采模拟研究[J]. 煤炭科学技术, 2017, 45(5): 121-127. LI Sheng, BI Huijie, FAN Chaojun, et al. Simulation study of gas drainage with borehole passed through strata based on fluid-solid coupling[J]. Coal Science and Technology, 2017, 45(5): 121-127.
[15]LI Sheng, FAN Chaojun, HAN Jun, et al. A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 324-336.
[16]ZHU W C, TANG C A. Micromechanical model for simulating the fracture process of rock[J]. Rock Mechanics and Rock Engineering, 2004, 37(1): 25-56.
[17]FAN Chaojun, LI Sheng, LUO Mingkun, et al. Coal and gas outburst dynamic system[J]. International Journal of Mining Science and Technology, 2017, 27(1): 49-55.

相似文献/References:

[1]刘世通.辛置煤矿水力压裂卸压增透影响半径数值模拟研究[J].中国安全生产科学技术,2013,9(2):44.
 LIU Shi tong.Numerical simulation of pressure relief and antireflection radius influenced by  hydraulic fracturing in Xinzhi coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):44.
[2]闫金鹏,刘泽功 ,姜秀雷,等.高瓦斯低透气性煤层水力压裂数值模拟研究[J].中国安全生产科学技术,2013,9(8):27.[doi:10.11731/j.issn.1673-193x.2013.08.005]
 YAN Jin peng,LIU Ze gong,JIANG Xiu lei,et al.Numerical simulation on hydraulic fracturing procedure of coal seam with high gas and low air permeability[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):27.[doi:10.11731/j.issn.1673-193x.2013.08.005]
[3]李英明,杨明东,付永刚.U型工作面上隅角埋管瓦斯抽采数值模拟研究[J].中国安全生产科学技术,2013,9(12):16.[doi:10.11731/j.issn.1673-193x.2013.12.002]
 LI Ying-ming,YANG Ming-dong,FU Yong-gang.Numerical simulation on gas drainage with buried pipe in upper corner of U\|type working face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):16.[doi:10.11731/j.issn.1673-193x.2013.12.002]
[4]姜二龙,刘健,蔡文鹏,等.深孔预裂爆破技术在低透气性回采工作面中的试验研究[J].中国安全生产科学技术,2013,9(7):20.[doi:10.11731/j.issn.1673-193x.2013.07.003]
 JIANG Er long,LIU Jian,CAI Wen peng,et al.Experiment study on deep hole pre-splitting blasting technology in low permeability outburst working face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):20.[doi:10.11731/j.issn.1673-193x.2013.07.003]
[5]蔡文鹏,刘健,孙东生,等.顶板走向高位钻孔瓦斯抽采技术的研究及应用[J].中国安全生产科学技术,2013,9(12):35.[doi:10.11731/j.issn.1673-193x.2013.12.005]
 CAI Wen peng,LIU Jian,SUN Dong sheng,et al.Research and application of gas drainage technique with highlocated drilling method along roof strike[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):35.[doi:10.11731/j.issn.1673-193x.2013.12.005]
[6]孙晓梅,吕品,刘琛琛,等.基于CFD及正交试验的工作面流场参数优化[J].中国安全生产科学技术,2014,10(4):54.[doi:10.11731/j.issn.1673-193x.2014.04.009]
 SUN Xiao mei,LV Pin,LIU Chen chen,et al.Optimization of flow field parameters in working face based on orthogonal experiment and CFD[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):54.[doi:10.11731/j.issn.1673-193x.2014.04.009]
[7]吴爱军,王巧莉.薛湖矿二2煤顺层钻孔瓦斯抽放的数值模拟与分析[J].中国安全生产科学技术,2014,10(6):90.[doi:10.11731/j.issn.1673-193x.2014.06.014]
 WU Ai jun,WANG Qiao li.Numerical simulation and analysis on gas extraction with bedding drillings in the 22 coal seam of Xuehu Mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):90.[doi:10.11731/j.issn.1673-193x.2014.06.014]
[8]杨明,闫潮,刘亚军.斜交高位钻孔抽采空区瓦斯设计及优化研究[J].中国安全生产科学技术,2014,10(7):117.[doi:10.11731/j.issn.1673-193x.2014.07.021]
 YANG Ming,YAN Chao,LIU Ya jun.Research and optimization of gas extraction in gob by skew high level boreholes[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):117.[doi:10.11731/j.issn.1673-193x.2014.07.021]
[9]戎立帆,柏发松,车志飞.下向穿层瓦斯抽采钻孔新型封孔方法及应用[J].中国安全生产科学技术,2014,10(8):64.[doi:10.11731/j.issn.1673-193x.2014.08.011]
 RONG Li-fan,BAI Fa-song,et al.New hole sealing method and application for gas extraction by downward cross-layer drilling[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):64.[doi:10.11731/j.issn.1673-193x.2014.08.011]
[10]徐雪战,孟祥瑞,赵光明,等.基于三维可视化的卸压区瓦斯穿层抽采仿真研究[J].中国安全生产科学技术,2014,10(9):77.[doi:10.11731/j.issn.1673-193x.2014.09.013]
 XU Xue-zhan,MENG Xiang-rui,ZHAO Guang-ming,et al.Virtual simulation of gas drainage drilling through layers in stress-relaxation zone based on three-dimensional visualization[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):77.[doi:10.11731/j.issn.1673-193x.2014.09.013]
[11]孙东生,刘健,蔡文鹏,等.高瓦斯低透气性煤层水力压裂技术的试验研究[J].中国安全生产科学技术,2013,9(9):49.[doi:10.11731/j.issn.1673-193x.2013.09.009]
 SUN Dong sheng,LIU Jian,CAI Wen peng,et al.Experimental study on hydraulic fracturing technology in high gas and low permeability coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):49.[doi:10.11731/j.issn.1673-193x.2013.09.009]
[12]刘进平,高云,李欣.地面水力压裂对井下煤层瓦斯抽采影响分析[J].中国安全生产科学技术,2018,14(10):133.[doi:10.11731/j.issn.1673-193x.2018.10.021]
 LIU Jinping,GAO Yun,LI Xin.Analysis on influence of ground hydraulic fracturing on gas extraction in underground coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(1):133.[doi:10.11731/j.issn.1673-193x.2018.10.021]

备注/Memo

备注/Memo:
国家重点研发计划(2016YFC0801407-2);国家自然科学基金项目(51674132);深部瓦斯抽采与围岩控制技术国家地方联合工程实验室开放基金项目(G201602);辽宁省自然科学基金项目(2015020614)
更新日期/Last Update: 2018-02-12