|本期目录/Table of Contents|

[1]张登春,章照宏,袁江雅,等.热力管加热桥面抗冰融冰试验研究[J].中国安全生产科学技术,2017,13(12):179-185.[doi:10.11731/j.issn.1673-193x.2017.12.028]
 ZHANG Dengchun,ZHANG Zhaohong,YUAN Jiangya,et al.Experimental research on anti icing and ice melting of bridge deck by heat pipe heating[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(12):179-185.[doi:10.11731/j.issn.1673-193x.2017.12.028]
点击复制

热力管加热桥面抗冰融冰试验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年12期
页码:
179-185
栏目:
职业安全卫生管理与技术
出版日期:
2017-12-31

文章信息/Info

Title:
Experimental research on anti icing and ice melting of bridge deck by heat pipe heating
文章编号:
1673-193X(2017)-12-0179-07
作者:
张登春1章照宏2袁江雅2邹声华1李孔清1李文宇1
(1. 湖南科技大学 土木工程学院,湖南 湘潭,411201;2. 湖南省高速公路管理局,湖南 长沙 410016)
Author(s):
ZHANG Dengchun1 ZHANG Zhaohong2 YUAN Jiangya2 ZOU Shenghua1 LI Kongqing1 LI Wenyu1
(1. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China; 2. Hunan Provincial Expressway Administration, Changsha Hunan 410016, China)
关键词:
热力管桥面防冰融冰模型试验
Keywords:
heat pipe bridge deck anti icing and ice melting model test
分类号:
X93;U216.412
DOI:
10.11731/j.issn.1673-193x.2017.12.028
文献标志码:
A
摘要:
为了研究热力管加热桥面抗冰融冰对于公路交通安全的影响,制作了尺寸为600 mm×600 mm×380 mm的桥梁试件,在人工环境室对热力管融冰进行了模型试验。结果表明:试件上表面温升速率和融冰时间取决于热力管间距、隔热层、风速、环境温度和热力管外表面温度。在相同工况条件下,100 mm间距的热力管融冰能力要大于150 mm间距的热力管,无隔热层时,100 mm间距热力管向上传递的热量占总加热量的13.4%,融冰时间为211 min;150 mm间距热力管向上传递的热量占总加热量的18.3%,融冰时间为271 min。在热力管层下面铺设厚度为2 mm、导热系数为0.062 W/(m· K)的隔热材料后,100 mm间距热力管向上传递的热量占总加热量的46.9%,融冰时间为175 min;150 mm间距热力管向上传递的热量占总加热量的51.9%,融冰时间为161 min。热力管层铺设隔热材料可有效阻止热量向下传递,从而缩短融冰时间。
Abstract:
To study the influence of anti icing and ice melting of bridge deck by the heating of heat pipe on the traffic safety of highway, the model tests of ice melting by the heat pipe were carried out in the artificial environment chamber through preparing the bridge samples with the size of 600 mm×600 mm×380 mm. The results showed that the temperature rise rate and ice melting time on the upper surface of the samples depended on the heat pipe spacing, heat insulation layer, air velocity, environment temperature and external surface temperature of heat pipe. Under the same working conditions, the ice melting capacity of the heat pipe with the spacing of 100 mm was greater than that of 150 mm. When without the heat insulation layer, the heat quantity transferring upward from the heat pipe with the spacing of 100 mm accounted for 13.4% of the total heat quantity, and the ice melting time was 211 min, while the heat quantity with 150 mm spacing accounted for 18.3% of the total heat quantity, and the ice melting time was 271 min. After laying the heat insulation material with the thickness of 2 mm and the thermal conductivity coefficient of 0.062 W/(m· K) under the heat pipe layer, the heat quantity transferring upward from the heat pipe with the spacing of 100 mm accounted for 46.9 % of the total heat quantity, and the ice melting time was 175 min, while the heat quantity with 150 mm spacing accounted for 51.9 % of the total heat quantity, and the ice melting time was 161 min. Laying the heat insulation material under the heat pipe layer can effectively prevent the downward heat transfer, so the ice melting time will be shortened.

参考文献/References:

[1]王选仓,张聪,林荣安,等. 绿色太阳能融雪化冰水泥路面关键技术研究[J]. 筑路机械与施工机械化, 2010,27(12):28-31. WANG Xuancang, ZHANG Cong, LIN Rong’an, et al. Study on snow removing cement pavement based on solar technology[J]. Road Machinery & Construction Mechanization, 2010, 27(12):28-31.
[2]Nagai N, Miyamoto S. Numerical simulation of snow melting on pavement surface with heat dissipation pipe embedded[J]. Transactions of the Japan Society of Mechanical Engineers, 2008, 74(3): 640-647.
[3]XU H N, TAN Y Q. Development and testing of heat and mass coupled model of heat and mass coupled model of snow melting for hydronic cally heated pavement[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012(2282): 14-21.
[4]Sherif Y, Christopher Y T, David F, et al. Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties[J]. ACI Materials Journal, 2000, 97(2):172-181.
[5]Ferrara A A, Haslett. Preferential bridge icing using heat pipes[M]. Washington D C: Federal Highway Administration, 1975.
[6]Asfour S, Bernardin F, Toussaint E, et al. Hydrothermal modeling of porous pavement for its surface de-freezing[J]. Applied Thermal Engineering, 2016(107):493-500.
[7]Chanjuan Han, Xiong (Bill) Yu. Feasibility of geothermal heat exchanger pile-based bridge deck snow melting system: a simulation based analysis[J]. Renewable Energy, 2017(101):214-224.
[8]Koji Morita, Makoto Tago. Operational characteristics of the Gaia snow-melting system in Ninohe, Iwate, Japan[J]. Geo-Heat Center Quarterly Bulletin, 2000, 21(4):5-11.
[9]徐慧宁. 流体加热道路融雪系统温-湿耦合融雪模型及仿真分析[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[10]王华军. 流体加热道路融雪传热传质特性研究[D]. 天津: 天津大学, 2007.
[11]黄勇,高青,马纯强,等. 道路融雪化冰过程冰层的热融特性[J]. 吉林大学学报(工学版), 2010, 23(5):22-26. HUANG Yong, GAO Qin, MA Chunqiang, et al. Heat melting characteristic of ice layer in ice-snow melting process on road pavement[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 23(5):22-26.
[12]刘凯. 融雪化冰水泥混凝土路面研究[D]. 西安: 长安大学, 2010.
[13]张登春, 章照宏, 袁铜森, 等. 桥梁热力管防冻融冰系统的数值模拟[J]. 热科学与技术, 2016, 15(3): 204-210. ZHANG Dengchun, ZHANG Zhaohong, YUAN Tongsen, et al. Numerical simulation of heat pipe deicing system on bridge[J]. Journal of Thermal Science and Technology, 2016, 15(3): 204-210.
[14]张登春,章照宏,袁江雅,等.公路桥梁发热电缆除冰系统试验研究[J].中国安全生产科学技术,2015,11(11):90-95. ZHANG Dengchun, ZHANG Zhaohong, YUAN Jiangya, et al. Experimental research on deicing system by heating cables for highway bridges[J]. Journal of Safety Science and Technology, 2015, 11(11):90-95.
[15]骆宏勋,李晟,章照宏,等.公路桥梁超薄导电磨耗层除冰系统试验研究[J].湖南交通科技,2016,42(3):85-88. LUO Hongxun, LI Sheng, ZHANG Zhaohong, et al. Experimental research on deicing system by ultra-thin abrasion conductive layer for highway bridges[J]. Hunan Communication Science and Technology, 2016, 42(3):85-88.

相似文献/References:

备注/Memo

备注/Memo:
湖南省自然科学基金项目(2016JJ2054); 湖南省交通运输厅科技进步与创新重点项目(201413)
更新日期/Last Update: 2018-01-29