|本期目录/Table of Contents|

[1]周波,袁亮,薛俊华,等.巷道顶板三维板梁结构的传力机制研究[J].中国安全生产科学技术,2017,13(12):131-137.[doi:10.11731/j.issn.1673-193x.2017.12.020]
 ZHOU Bo,YUAN Liang,XUE Junhua,et al.Study on force transfer mechanism of roadway roof with three-dimensional plate girder structure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(12):131-137.[doi:10.11731/j.issn.1673-193x.2017.12.020]
点击复制

巷道顶板三维板梁结构的传力机制研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年12期
页码:
131-137
栏目:
职业安全卫生管理与技术
出版日期:
2017-12-31

文章信息/Info

Title:
Study on force transfer mechanism of roadway roof with three-dimensional plate girder structure
文章编号:
1673-193X(2017)-12-0131-07
作者:
周波12袁亮1薛俊华3薛生1
(1. 安徽理工大学 能源与安全学院, 安徽 淮南 232001;2. 淮南职业技术学院 能源工程系, 安徽 淮南 232001; 3.深部煤炭开采与环境保护国家重点实验室, 安徽 淮南 232001)
Author(s):
ZHOU Bo12 YUAN Liang1 XUE Junhua3 XUE Sheng1
(1. School of Energy and Safety, Anhui University of Science and Technology, Huainan Anhui 232001, China; 2. Department of Energy Engineering, Huainan Vocational & Technical College, Huainan Anhui 232001, China; 3. State Key Laboratory of Deep Coal Mining & Environment Protection, Huainan Anhui 232001, China)
关键词:
巷道围岩三维板梁应力传递层间结构面承载应力应变能密度
Keywords:
roadway surrounding rock three-dimensional plate girder stress transfer interlayer structure plane load-bearing stress strain energy density
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2017.12.020
文献标志码:
A
摘要:
为了揭示巷道开挖前后,巷道顶板三维板梁结构内应力场的演化规律,通过建立层状岩层的承载传力力学模型,研究了层间结构面和层状岩体变形对承载和传递应力的扰动作用,提出了层间结构面和层状岩体承载传力的能量分析方法,确定了层状岩体的应力传递和应变能密度解析解,揭示了结构面储能和层状岩体承载传力的影响规律,并在淮南张集矿1412A工作面开展工程应用。结果表明:法向刚度和切向刚度决定了层间结构面的储能能力,法向应力和切向应力决定了结构面的实际储能大小;岩层的承载应力并非等于上部岩层的负重,而是上部岩层的作用应力、自重应力、下位岩层的作用应力叠加的结果;应力传递效率与相邻上下层岩层的容重比呈正相关关系,与层厚比呈负相关关系,与弹性模量比呈负相关关系;1412A工作面开采时,1#煤顶板第1层薄的软弱泥岩无法承载上方岩层的重量,第2层厚的中砂岩可以承载上方岩层及自身重量,载荷应力为0.90 MPa,计算得到该类条件下基本顶初次断裂步距为30.7 m,与现场实测结果基本一致。
Abstract:
In order to reveal the evolution laws of the internal stress field in roadway roof with the three-dimensional plate girder structure before and after the roadway excavation, through establishing the mechanical model on load-bearing force transfer of bedded rock formation, the disturbance action on the load-bearing and transfer stress by the interlayer structure plane and bedded rock deformation was studied. The energy analysis method of interlayer structure plane and load-bearing force transfer of bedded rock was proposed, and the analytical solutions of stress transfer and strain energy density of bedded rock were determined. The influence laws of energy storage of structural plane and load-bearing force transfer of bedded rock were revealed, and the engineering application was carried out on 1412A working face in Zhangji Coal Mine in Huainan. The results showed that the energy storage capability of interlayer structure plane depended on the normal stiffness and tangential stiffness, and the practical energy storage capability of structure plane depended on the normal stress and tangential stress. The load-bearing stress of rock formation was the superposition result of applied stress of upper rock formation, geostatic stress and applied stress of lower rock formation, rather than the loading weight of upper rock formation. The stress transfer efficiency was positively correlated with the volume-weight ratio of neighboring upper and lower rock formation, and was negatively correlated with the layer thickness ratio and elastic modular ratio. During the mining on 1412A working face, the thin weak mudstone in the first layer of one coal roof could not bear the weight of above rock formation, while the thick medium sandstone in the second layer could bear the weights of above rock formation and itself, and the loading stress was 0.90 MPa. The first breakage drawing pace of old roof under the similar conditions obtained by the calculation was 30.7 m, which was in agreement with the measured data in field.

参考文献/References:

[1]韦四江,李奎,吴怡凡,等.冲击地压下巷道围岩失稳机制与控制技术研究综述[J].中国安全科学学报,2016,26(9):90-95. WEI Sijiang, LI Kui, WU Yifan, et al. A review of instability mechanism and control technology of roadway surrounding rock under rock burst condition[J].China Safety Science Journal,2016,26(9):90-95.
[2]F Huang ,LH Zhao ,TH Ling , et al. Rock mass collapse mechanism of concealed karst cave beneath deep tunnel [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91:133-138.
[3]陈梁,茅献彪,李明,等. 基于Drucker-Prager准则的深部巷道破裂围岩弹塑性分析[J].煤炭学报,2017, 42(2): 484-491. CHEN Liang,MAO Xianbiao,LI Ming,et al. Elastoplastic analysis of cracked surrounding rock in deep roadway based on Drucker-Prager criterion[J]. Journal of China Coal Society,2017,42(2):484-491.
[4]左建平, 孙运江, 李楷,等.陷落柱影响区软岩巷道加固段长度及其底鼓控制研究[J].中国矿业大学学报,2017,46(1): 18-26. ZUO Jianping, SUN Yunjiang, LI Kai,et al. Study of the reinforced supporting length and floor heave control technology of soft rock roadway influenced by collapse column[J]. Journal of China University of Mining & Technology,2017,46(1): 18-26.
[5]冯友良, 刘栋梁, 罗亚飞.煤巷顶板沉积岩体钻进动力响应特性试验研究[J].中国安全生产科学技术,2016,12(5):31-37. FENG Youliang,LIU Dongliang, LUO Yafei .Experimental study on dynamic response characteristics in drilling sedimentary rocks of coal roadway roof[J]. Journal of Safety Science and Technology,2016,12(5):31-37.
[6]杨旭旭,靖洪文,陈坤福,等.深部原岩应力对巷道围岩破裂范围的影响规律研究[J].采矿与安全工程学报, 2013,30(4): 495-500. YANG Xuxu, JING Hongwen, CHEN Kunfu, et al. Study on influence law of in-situ stress in deep underground rocks on the size of failure zone in roadway[J].Journal of Mining & Safety Engineering,2013,30(4): 495-500.
[7]蒋景东.深部软弱围岩流变应力恢复法地应力测试与分析方法研究[D].武汉:武汉大学,2016.
[8]康红普,司林坡,张晓.浅部煤矿井下地应力分布特征研究及应用[J].煤炭学报,2016,41(6):1332-1340. KANG Hongpu, SI Linpo, ZHANG Xiao. Characteristics of underground in-situ stress distribution in shallow coal mines and its applications[J].Journal of China Coal Society,2016,41(6):1332-1340.
[9]李远,王卓,乔兰,等.基于双温度补偿的瞬接续采型空心包体地应力测试技术研究[J].岩石力学与工程学报,2017,36(6):1479-1487. LI Yuan, WANG Zhuo, QIAO Lan, et al.Development of CSIRO cell with the compromised application of instantaneous data-logging,no-power data-connection and twin temperature compensation techniques [J].Chinese Journal of Rock Mechanics and Engineering,2017,36(6):1479-1487.
[10]宋林.节理岩体中应力波传播的动力特性研究[D].西安:西安建筑科技大学,2012.
[11]刘鸿文. 高等材料力学[M].北京:高等教育出版社,1985.
[12]钱鸣高,石平五,许家林.矿山压力与岩层控制.第2版[M].徐州:中国矿业大学出版社,2010.
[13]衡帅,杨春和,李芷,等.基于能量耗散的页岩脆性特征[J].中南大学学报(自然科学版),2016,47(2):577-585. HENG Shuai, YANG Chunhe, LI Zhi, et al. Shale brittleness estimation based on energy dissipation[J].Journal of Central South University(Science and Technology),2016,47(2):577-585.
[14]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570. XIE Heping, PENG Ruidong, JU Yang.Energy dissipation of rock deformation and fracture[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(21):3565-3570.
[15]赵忠虎,鲁睿,张国庆.岩石破坏全过程中的能量变化分析[J].矿业研究与开发,2006,26(5):8-11. ZHAO Zhonghu, LU Rui, ZHANG Guoqing.Analysis on energy transformation for rock in the whole process of deformation and fracture[J].Mining R & D,2006,26(5):8-11.
[16]常红,赵子龙.材料力学.II[M].北京:科学出版社,2012.
[17]李振雷.厚煤层综放开采的降载减冲原理及其工程实践[D].徐州:中国矿业大学,2016.

相似文献/References:

[1]冯伟,韩立军,刘灿灿.水平应力对半圆拱形巷道围岩应力分布及变形特征影响[J].中国安全生产科学技术,2012,8(12):21.
 FENG Wei,HAN Li jun,et al.Influence of horizontal stress on stress distribution and deformation characteristics around arched roadway[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):21.
[2]彭 瑞,赵光明,孟祥瑞.岩体强度参数新解及应用[J].中国安全生产科学技术,2014,10(5):43.[doi:10.11731/j.issn.1673-193x.2014.05.007]
 PENG Rui,ZHAO Guangming,MENG Xiangrui.Latest explanation of rock mass strength parameters and its application[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(12):43.[doi:10.11731/j.issn.1673-193x.2014.05.007]
[3]李国盛,张辉,蒋帅旗.多次强动压巷道围岩“三区”强化支护机理及控制技术研究[J].中国安全生产科学技术,2018,14(6):52.[doi:10.11731/j.issn.1673-193x.2018.06.008]
 LI Guosheng,ZHANG Hui,,et al.Study on reinforced support mechanism and control technology of “Three Zones” in roadway surrounding rock with multiple strong dynamic pressures[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):52.[doi:10.11731/j.issn.1673-193x.2018.06.008]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-01-29