|本期目录/Table of Contents|

[1]王延生,张勋,徐庆生.山丘地形下近浅埋煤层综采面静动载叠加的矿压显现特征研究[J].中国安全生产科学技术,2017,13(10):115-121.[doi:10.11731/j.issn.1673-193x.2017.10.020]
 WANG Yansheng,ZHANG Xun,XU Qingsheng.Study on strata behavior characteristics of fully mechanized mining face at near shallow buried coal seam with superimposed static and dynamic loading in hill terrain[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):115-121.[doi:10.11731/j.issn.1673-193x.2017.10.020]
点击复制

山丘地形下近浅埋煤层综采面静动载叠加的矿压显现特征研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年10期
页码:
115-121
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-10-30

文章信息/Info

Title:
Study on strata behavior characteristics of fully mechanized mining face at near shallow buried coal seam with superimposed static and dynamic loading in hill terrain
文章编号:
1673-193X(2017)-10-0115-07
作者:
王延生1张勋1徐庆生2
(1. 辽宁工程技术大学 矿业学院,辽宁 阜新 123000;2. 喜马塘煤矿有限公司,云南 昭通 657206)
Author(s):
WANG Yansheng1 ZHANG Xun1 XU Qingsheng2
(1. College of Mining Engineering, Liaoning Technical University, Fuxin Liaoning 123000, China; 2. Ximatang Coal Mine Limited Company, Zhaotong Yunnan 657206, China)
关键词:
山丘地形近浅埋综采面静载传递动载矿压静动载叠加
Keywords:
hill terrain near shallow buried fully mechanized mining face static load transfer dynamic load mine pressure superimposed static and dynamic loading
分类号:
TD322
DOI:
10.11731/j.issn.1673-193x.2017.10.020
文献标志码:
A
摘要:
针对近浅埋综采面过山丘地形发生强矿压显现的问题,采用现场监测、理论分析与数值模拟相结合的方法,建立山丘静载应力传递模型和不同岩层赋存特征的沙土型与土石型山丘工作面关键块体结构力学模型,分析山丘地形工作面矿压发生机理。研究表明:山丘静载向工作面传递的垂直应力呈钟形分布,山丘高静载应力易激发弱铰接结构失稳;山丘坡体中关键层的有无导致了土石型和沙土型山丘工作面矿压发生机理的差异性;坡体断裂块的倾斜回转运动是沙土型山丘工作面发生强矿压的主导因素,断裂块不同的倾斜回转方向导致工作面在上坡段矿压显现缓和而下坡段显现剧烈;土石型山丘工作面的矿压显现主要受坡体中关键块体结构稳定状态的控制,工作面在上坡初和坡顶段动载矿压强烈而下坡段后期较缓和。数值计算结果与现场监测和理论分析相符。
Abstract:
Aiming at the problem of strong strata behavior in the near shallow buried fully mechanized mining face passing through the hill terrain, a transfer model of hill static load stress and a structural mechanics model of key blocks on the mining face in the sand-soil hill and soil-rock hill with different strata preservation characteristics were established by using the combination methods of field monitoring, theoretical analysis and numerical simulation, then the occurrence mechanism of mine pressure on the mining face in the hill terrain was analyzed. The results showed that the vertical stress which transferred by the hill static load to the mining face presented a bell-shaped distribution, and the high static load stress of hill was easy to cause the instability of weak hinged structure. The difference in the occurrence mechanism of mine pressure on the mining face in the sand-soil hill and soil-rock hill was caused by whether there was the key stratum or not in the hill slope. The inclined rotation motion of slope fault blocks was the dominant factor of the strong mine pressure on the mining face in the sand-soil hill, and the different inclined rotation directions of the fault blocks caused the slight strata behavior in uphill section whereas strong in downhill section on the mining face. The strata behavior on the mining face in the soil-rock hill was mainly controlled by the stable state of the key blocks structure in the slope, and the dynamic load mine pressure of the mining face was strong at the beginning of the uphill section and the hill top section whereas slight at the later period of downhill section. The results of numerical simulation were consistent with the field monitoring and theo-retical analysis.

参考文献/References:

[1]黄庆享. 浅埋煤层的矿压特征与浅埋煤层定义[J]. 岩石力学与工程学报, 2002, 21(8):1174-1177. HUANG Qingxiang. Ground pressure behavior and definition of shallow seams[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(8): 1174-1177.
[2]朱卫兵. 浅埋近距离煤层重复采动关键层结构失稳机理研究[D]. 徐州:中国矿业大学, 2010.
[3]范钢伟,张东升,马立强. 神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J]. 中国矿业大学学报, 2011, 40(2):196-201. FAN Gangwei, ZHANG Dongsheng,MA Liqiang. Overburden Movement and fracture distribution induced by longwall mining of the shallow coal seam in the shendong coalfield[J]. Journal of China University of Mining & Technology, 2011, 40(2):196-201.
[4]任艳芳,宁宇,齐庆新. 浅埋深长壁工作面覆岩破断特征相似模拟[J]. 煤炭学报, 2013, 38(1):61-66. REN Yanfang, NING Yu, QI Qingxin. Physical analogous simulation on the characteristcs of overburden breakage at shallow longwall coalface[J]. Journal of China Coal Society, 2013, 38(1):61-66.
[5]刘国磊, 樊克恭. 山地浅埋煤层工作面支架合理工作阻力研究[J]. 地下空间与工程学报, 2012, 8(5):1034-1040. LIU Guolei, FAN Kegong. Research on working resistance of mining working face in mountainous shallow-buried coal seam[J]. Journal of underground space and Engineering, 2012, 8(5):1034-1040.
[6]郑磊.山地浅埋近距离煤层群顶板结构与岩层控制研究[D].青岛:山东科技大学,2011.
[7]朱恒忠,刘萍,宋广朋. 大起伏山地浅埋煤层矿压现场试验研究[J]. 科学技术与工程,2014,14(28):195-199. ZHU Hengzhong, LIU Ping, SONG Guangpeng. Field test research on large amplitude mountain shallow seam pressure behavior[J].Science Technology and Engineering,2014,14(28):195-199.
[8]田小松, 郑杰炳, 王刚. 丘陵山地采煤地地表移动变形与裂缝特征相关性研究[J]. 中国安全生产科学技术, 2013, 9(11):5-10. TIAN Xiaosong, ZHENG Jiebing, WANG Gang. Study on correlation of surface movement deformation and surface cracks induced by mining in hills and mountains area[J]. Journal of Safety Science and Technology, 2013, 9(11):5-10.
[9]王延生,张勋,戚旭鹏,等. 山丘地形综采面矿压显现多因素敏感性分析[J]. 辽宁工程技术大学学报(自然科学版),2017,36(3):238-242. WANG Yansheng, ZHANG Xun, QI Xupeng, et. al. Sensitivity analysis on multiple factors of strata behavior of fully-mechanized face under the hill[J]. Journal of Liaoning Technical University(NaturalScience),2017,36(3):238-242.
[10]Wang Xufeng, Zhang Dongsheng, Zhang C G, et al. Mechanism of mining-induced slope movement for gullies overlaying shallow coal seams[J]. Journal of Mountain Science, 2013, 10(3):388-397.
[11]Jianwei Li, Changyou Liu, Tong Zhao. Effects of gully terrain on stress field distribution and ground pressure behavior in shallow seam mining[J]. International Journal of Mining Science and Technology, 2016, 26(2):255-260.

相似文献/References:

备注/Memo

备注/Memo:
国家自然基金面上项目(51174108);青年科学基金项目(51604144);辽宁省自然科学基金项目(20170540430)
更新日期/Last Update: 2017-11-03