|本期目录/Table of Contents|

[1]郑新军,岳高伟,霍留鹏,等.煤层封存CO2性能的晶格理论模型及应用[J].中国安全生产科学技术,2017,13(10):30-36.[doi:10.11731/j.issn.1673-193x.2017.10.005]
 ZHENG Xinjun,YUE Gaowei,HUO Liupeng,et al.Lattice theory model and its application on CO2 storing performance of coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):30-36.[doi:10.11731/j.issn.1673-193x.2017.10.005]
点击复制

煤层封存CO2性能的晶格理论模型及应用
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年10期
页码:
30-36
栏目:
学术论著
出版日期:
2017-10-30

文章信息/Info

Title:
Lattice theory model and its application on CO2 storing performance of coal seam
文章编号:
1673-193X(2017)-10-0030-07
作者:
郑新军岳高伟霍留鹏曾春林梁为民
(河南理工大学 土木工程学院,河南 焦作 454000)
Author(s):
ZHENG Xinjun YUE Gaowei HUO Liupeng ZENG Chunlin LIANG Weimin
(School of Civil Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China)
关键词:
煤层晶格理论模型CO2吸附等温线预测
Keywords:
lattice theory model coal seam CO2 adsorption isotherm prediction
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2017.10.005
文献标志码:
A
摘要:
为了更好地在煤层中封存CO2,开展CO2在煤体上跨越临界点的大范围吸附规律(随压力非单调递增)研究尤为重要。基于晶格热力学方程,建立了微孔吸附超临界流体的晶格模型,并对不同温度下不同变质程度煤样的CO2的吸附等温线进行了预测,研究结果表明:CO2在煤上的吸附等温线随压力增加先增大后减小,不再满足I型等温线;CO2分子之间作用势εa虽然远小于CO2分子与孔壁之间的作用势εs,但忽略εa将导致理论吸附量与实测吸附量误差变大;作用势εs与温度正相关,而εa与温度负相关。晶格理论模型(εa≠0)拟合CO2在煤上吸附出现极值的等温线效果良好,相关系数均在0.99以上,其对不同温度下不同变质程度煤的CO2的吸附等温线进行预测结果与实测结果基本一致,其相对误差不超过5%。
Abstract:
In order to better store CO2 in coal seam, it is very important to study the large range adsorption laws (non-monotonically increasing with pressure) of CO2 over the critical point in coal body. Basing on the lattice thermodynamics equation, a lattice model on microporous adsorption of supercritical fluids was established to predict the CO2 adsorption isotherm of coal with different metamorphic grade under different temperature. The results showed that the CO2 adsorption isotherm increased first and then decreased with the increasing pressure, which did not satisfy the type I isotherm. The interaction potential εa among CO2 molecules was much less than the interaction potential εs between CO2 molecule and pore wall, but if we ignored the εa, the error of adsorption capacity between theory and experiment would become bigger. There existed a positive correlation between interaction potential εs and temperature, but a negative correlation between interaction potential εa and temperature. The fitting results of lattice theory model (εa≠0) on the isotherm when CO2 adsorption appeared the extreme value, and the correlation coefficient was more than 0.99. The predicted results of CO2 adsorption isotherm for coal with different metamorphic grade under different temperature were in good agreement with the measured results, and its relative error were all less than 5%.

参考文献/References:

[1]周来,冯启言,秦勇. CO2和 CH4在煤基质表面竞争吸附的热力学分析[J]. 煤炭学报,2011,36(8):1307-1311. ZHOU Lai, FENG Qiyan, QIN Yong. Thermodynamic analysis of competitive adsorption of CO2 and CH4 on coal matrix[J]. Journal of China Coal Society, 2011, 36(8): 1307-1311.
[2]杨宏民,魏晨慧,王兆丰,等. 基于多物理场耦合的井下注气驱替煤层甲烷的数值模拟[J]. 煤炭学报,2010,35(S1):109-114. YANG Hongmin, WEI Chenhui, WANG Zhaofeng, et al. Numerical simulation of coal-bed methane displacement by underground gas injection based on multi-physics coupling[J]. Journal of China Coal Society, 2010, 35(S1): 109-114.
[3]崔永君,张群,张泓,等. 不同煤级煤对CH4、N2和CO2单组分气体的吸附[J]. 天然气工业,2005,25(1):61-65. CUI Yongjun, ZHANG Qun, ZHANG Hong, et al. Adsorption of different rank coals to single component cases[J]. Natural Gas Industry, 2005, 25(1): 61-65.
[4]范志强,SAM W,叶建平. 中国二氧化碳注入提高煤层气采收率先导性试验技术[M]. 北京:地质出版社,2008.
[5]White C M,Smith D H,Jones K L,et al. Sequestration of carbon dioxide in coal with enhanced coal bed methane recoverys a review[J]. Energy & Fuels,2005,19(3):659-724.
[6]李全中,倪小明,王延斌,等. 超临界状态下煤岩吸附/解吸二氧化碳的实验[J]. 煤田地质与勘探,2014,42(3):36-39. LI Quanzhong, NI Xiaoming, WANG yanbin, et al. The experimental study on the adsorption/desorption of carbon dioxide in the coal under supercritical condition[J]. Coal Geology & Exploration, 2014, 42(3): 36-39.
[7]Gregg S J, Sing K S W. Adsorption surface area and porosity[M]. London: Academic Press, 1982, 42-257.
[8]周理,李明,周亚平. 超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J]. 中国科学(B辑),2000,30(1):49-56. ZHOU Li, LI Ming, ZHOU Yaping. Adsorption measurement and theoretical analysis of supercritical methane on high surface activated carbon[J]. Science in China (Series B), 2000,30(1):49-56.
[9]郑青榕,廖海峰,解晨,等. 超临界甲烷在活性炭上的吸附平衡分析[J]. 燃料化学学报,2012,40(7):892-896. ZHENG Qingrong, LIAO Haifeng, XIE Chen, et al. Adsorption equilibrium of supercritical methane on activated carbon[J]. Joural of Fuel Chemistry and Technology, 2012, 40(7): 892-896.
[10]胡涛,马正飞,姚虎卿. 甲烷超临界高压吸附等温线研究[J]. 天然气化工,2002,27(2):36-40. HU Tao, MA Zhengfei, YAO Huqing. Study on high pressure adsorption isotherms of supercritical methane[J]. Natural Gas Chemical Industry, 2002, 27(2): 36-40.
[11]Malbrunot P, Vidal D, Vermesse J, et al. Adsorption measurements of argon, neon, krytion, nitrogen and methane on activated carbon up to 650 MPa[J]. Langmuir, 1992, 8(2): 577-580.
[12]Aranovich G L, Donahue M D. Adsorption of supercritical fluids[J]. Journal of Colloid & Interface Science, 1996, 180: 537-541.
[13]Bénard P, Chahine R. Modeling of high pressure adsorption isotherms above the critical temperature on microporous adsorbents: application to methane[J]. Langmuir, 1997, 13: 808-813.
[14]Aranovich G L, Donahue M D. Determining surface areas from linear adsorption isotherms at supercritical conditions[J]. Journal of Colloid & Interface Science, 1997, 194: 392-397.
[15]Tang Xu, Nino Ripepi, Nicholas P Stadie, et al. A dual-site Langmuir equation for accurate estimation of high pressure deep shalegas resources[J]. Fuel, 2016, 185:10-17.
[16]Ronny Pini,Stefan Ottiger,Giuseppe Storti,Marco Mazzotti. Prediction of competitive adsorption on coal by a lattice DFT model[J]. Adsorption,2010,16: 37-46
[17]Ono S,Kondo S. Molecular theory of surface tension in liguids[M]. Berlin: Springer,1960.
[18]Aranovich G L, Donohue M D. Vapor adsorption on microporous adsorbents[J]. Carbon, 1995, 33(10):1369-1375.
[19]Aranovich G L, Donohue M D. Predictions of multilayer adsorption using lattice theory[J]. Journal of Colloid and Interface Science, 1997, 189: 101-108.
[20]Aranovich G L. Analysis of adsorption isotherms: lattice theory predictions, classification of isotherms for gas-solid equilibria,and similarities in gas and liquid adsorption behavior[J]. Journal of Colloid and Interface Science,1998,200: 273-290.
[21]Aranovich G L, Donohue M D. Vapor adsorption on microporous adsorbents [J]. Carbon, 2000, 38: 701-708.
[22]杨晓东, 林文胜, 郑青榕, 等. 超临界温度甲烷吸附的晶格理论及实验[J]. 上海交通大学学报,2003,37(7):1137-1140. YANG Xiaodong, LIN Wensheng, ZHENG Qingrong, et al. Latticetheory and experimental study of methane adsorption above the critical temperature[J]. Journal of Shanghai Jiao Tong University, 2003, 37(7): 1137-1140.
[23]郑莲慧,单钰铭,钟敬敏,等. 页岩气等温吸附分子动力学特征研究[J]. 科学技术与工程,2014,14(33):1-6. ZHENG Lianhui, SHAN Yuming, ZHONG Jingmin, et al. Research of shale gas isotherm adsorption molecular dynamics characteristic[J]. Science Technology and Engineering, 2014, 14(33): 1-6.
[24]Grigotiy L A, Marc D D. Adsorption of supercritical fluids[J]. Journal of Colloid and Interface Science, 1996, 180:537-541.
[25]Mahmud S, Sayeed A M, Robert L R, eta al. Ono-Kondo lattice model for high-pressure adsorption: Pure gases[J]. Fluid Phase Equilibria,2010,299:238-251.

相似文献/References:

[1]张鹏翔 ,李绍泉 .贵州井下煤层爆破地震波特征及其影响[J].中国安全生产科学技术,2013,9(8):49.[doi:10.11731/j.issn.1673-193x.2013.08.009]
 ZHANG Peng xiang,LI Shao quan.Characteristics and impact of blasted seismic wave in Guizhou underground coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(10):49.[doi:10.11731/j.issn.1673-193x.2013.08.009]
[2]李英明,贾安立,马念杰.煤巷顶板岩层赋存特征及块体梁顶板稳定性分析[J].中国安全生产科学技术,2014,10(6):51.[doi:10.11731/j.issn.1673-193x.2014.06.008]
 LI Ying ming,JIA An li,MA Nian jie.Analysis on occurrence characteristics of roof strata in coal roadway and stability of blocks rock beam roof[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(10):51.[doi:10.11731/j.issn.1673-193x.2014.06.008]
[3]杨伟,王赫宇,张树光.不同裂隙对煤层热流耦合现象的影响[J].中国安全生产科学技术,2016,12(8):11.[doi:10.11731/j.issn.1673-193x.2016.08.002]
 YANG Wei,WANG Heyu,ZHANG Shuguang.Effect of different cracks on thermal flow coupling in coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):11.[doi:10.11731/j.issn.1673-193x.2016.08.002]
[4]郭军杰,程晓阳.循环载荷下煤裂隙演化试验研究[J].中国安全生产科学技术,2018,14(2):39.[doi:10.11731/j.issn.1673-193x.2018.02.006]
 GUO Junjie,CHENG Xiaoyang.Experimental study on crack evolution of coal under cyclic loading[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):39.[doi:10.11731/j.issn.1673-193x.2018.02.006]
[5]张嬿妮,张帆,邓军,等.不同煤层煤氧化自燃性实验分析[J].中国安全生产科学技术,2018,14(10):39.[doi:10.11731/j.issn.1673-193x.2018.10.006]
 ZHANG Yanni,ZHANG Fan,DENG Jun,et al.Experimental analysis on characteristics of oxidation and spontaneous combustion of coal in different coal seams[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):39.[doi:10.11731/j.issn.1673-193x.2018.10.006]

备注/Memo

备注/Memo:
国家自然科学基金项目(41772163); 河南省高校科技创新团队支持计划项目(15IRTSTHN029)
更新日期/Last Update: 2017-11-03