|本期目录/Table of Contents|

[1]周西华,王原,宋东平,等.基于Box Behnken设计的煤导热系数分析与预测[J].中国安全生产科学技术,2017,13(9):109-114.[doi:10.11731/j.issn.1673-193x.2017.09.017]
 ZHOU Xihua,WANG Yuan,SONG Dongping,et al.Analysis and prediction on thermal conductivity of coal based on Box Behnken design[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):109-114.[doi:10.11731/j.issn.1673-193x.2017.09.017]
点击复制

基于Box Behnken设计的煤导热系数分析与预测
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年9期
页码:
109-114
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-09-30

文章信息/Info

Title:
Analysis and prediction on thermal conductivity of coal based on Box Behnken design
文章编号:
1673-193X(2017)-09-0109-06
作者:
周西华12王原12宋东平12白刚12李昂12董强123
(1.辽宁工程技术大学安全科学与工程学院,辽宁 阜新 123000;2.矿山热动力灾害与防治教育部重点实验室,辽宁 阜新 123000;3.中国建筑第六工程局有限公司,天津 300451)
Author(s):
ZHOU Xihua12 WANG Yuan12 SONG Dongping12 BAI Gang12 LI Ang12 DONG Qiang123
(1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin Liaoning 123000, China; 2. Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Fuxin Liaoning 123000, China; 3. China Construction Sixth Engineering Co., Ltd., Tianjin 300451, China)
关键词:
煤导热系数响应曲面试验设计Box Behken回归模型分析与预测交互作用
Keywords:
thermal conductivity of coal response surface methodology in experiments design Box Behnken regression model analysis and prediction interaction
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2017.09.017
文献标志码:
A
摘要:
为研究分析水分、固定碳及密度3个因素对煤导热系数的影响,选取多个矿井不同煤质的煤作为实验煤样,使用NETZSCH LFA457型激光导热系数测试仪进行测定,并引入二次响应曲面试验设计思想,采用Design Expert软件进行煤质指标的Box Behnken试验设计,按设计表筛选实验数据,构建了导热系数多因素、多水平影响下二次回归响应曲面模型,并对不同采样地点的煤导热系数进行了分析与预测。结果表明:二次回归方程P值小于0.000 1,极显著,失拟项为0.072 4,不显著,回归方程具有统计学意义;当水分在0.9%~10.9%,固定碳在49.3%~83.6%,密度在1.2~1.92 g·cm3之间,对煤的导热系数一次项影响程度为密度>固定碳>水分;二次项影响程度为固定碳和密度>水分和密度>水分和固定碳,且固定碳和密度之间存在交互作用,水分和密度、水分和固定碳之间无交互作用;应用响应曲面模型预测的煤导热系数误差为4.3%,满足精度要求。
Abstract:
In order to analyze the influence of water content, fixed carbon and density on the thermal conductivity of coal, the coal with different coal quality from several mines were selected as the experimental coal samples, then the measurement was conducted by using NETZSCH LFA457 laser thermal conductivity tester, and the quadratic response surface methodology in experiments design was introduced to carry out the Box Behnken experiments design of the coal quality index by using the Design Expert software. The experimental data were selected according to the design tables, and a quadratic regression response surface model of the thermal conductivity under the influence of multi-factors and multi-level was established, then the thermal conductivity of coal from different sampling sites were analyzed and predicted. The results showed that the P value of the quadratic regression equation was less than 0.0001 with extremely significant, and the lack of fit was 0.0724 with no significant, so the regression equation had the statistical significance. When the water content was between 0.9% and 10.9%, the fixed carbon value was between 49.3% and 83.6%, and the density was between 1.2 g·cm3 and 1.92 g·cm3, the influence degree of the first terms on the thermal conductivity of coal was in the order of density, fixed carbon and water content from large to small, and the influence degree of the quadratic terms was in the order of fixed carbon and density, water content and density, and water content and fixed carbon from large to small. Meanwhile, there existed the interaction between fixed carbon and density, but no interaction between water content and density, and water content and fixed carbon. The error of the thermal conductivity of coal predicted by the response surface model was 4.3%, which could meet the requirement of accuracy.

参考文献/References:

[1]张春, 题正义, 李宗翔. 综放采空区遗煤自燃的三维数值模拟研究[J]. 中国安全科学学报, 2013, 23(5):15. ZHANG Chun, TI Zhengyi, LI Zongxiang. Three-dimension numerical simulation of residual coal spontaneous combustion in goaf in fully mechanized caving face[J]. China Safety Science Journal, 2013, 23(5):15.
[2]周西华, 徐丽娜, 宋东平,等. 大同矿区煤的导热系数灰色关联分析及预测[J]. 中国安全生产科学技术, 2016, 12(2):78-82. ZHOU Xihua, XU Lina, SONG Dongping, et al. Grey relational analysis and prediction on thermal conductivity of coal in Datong mining area[J]. Journal of Safety Science and Technology, 2016, 12(2):78-82.
[3]马砺, 魏高明, 李珍宝,等. 煤导热系数影响因素的实验研究[J]. 矿业安全与环保, 2017, 44(2):31-34. MA Li, WEI Gaoming, LI Zhenbao, et al. Experimental study on influence factors of thermal conductivity of coal[J]. Mining Safety and Environmental Protection, 2017, 44(2):31-34.
[4]岳高伟, 雷留鹏, 王兆丰,等. 高低温环境下松散煤导热系数研究[J]. 河南理工大学学报(自然科学版), 2017, 36(2):1-6. YUE Gaowei, LEI Liupeng, WANG Zhaofeng, et al. Thermal diffusivity research of loose coal under high/low temperature environment[J]. Journal of Henan Polytechnic University, 2017, 36(2):1-6.
[5]岳高伟, 李豪君, 王兆丰,等. 松散煤体导热系数的温度及粒度效应[J]. 中国安全生产科学技术, 2015(2):17-22. YUE Gaowei, LI Haojun, WANG Zhaofeng, et al. Effect of temperature and particle size of thermal conductivity in loose coal[J]. Journal of Safety Science and Technology, 2015(2):17-22.
[6]岳高伟, 李豪君, 王兆丰. 基于二分法的松散煤体导热系数研究[J]. 矿业安全与环保, 2015(1):19-22. YUE Gaowei, LI Haojun, WANG Zhaofeng. Study on heat conductivity coefficient of Loose coal based on dichotomy[J]. Mining Safety and Environmental Protection, 2015(1):19-22
[7]陈晓坤, 蔡灿凡. 不同因素对煤岩导热系数影响的实验研究[J]. 煤矿安全,2017(3):18-20. Chen Xiaokun, Cai Canfan. Experimental study on effect of different factors on thermal conductivity of coal and rock[J]. Safety in Coal Mines, 2017(3):18-20.
[8]唐明云, 张国枢, 张朝举,等. 平行热线法测定松散煤体导热系数试验[J]. 矿业安全与环保, 2006, 33(5):13-15. TANG Mingyun, ZHANG Guoshu, ZHANG Chaoju, et al. Parallel hot-wire method determination test of thermal conductivity in loose coal[J]. Mining Safety and Environmental Protection, 2006, 33(5):13-15.
[9]鲁军辉. 煤田火区煤岩体热物性参数及热破坏特性研究[D]. 西安:西安科技大学, 2016.
[10]庞丹. 煤岩导热特性实验研究[D]. 阜新:辽宁工程技术大学, 2015.
[11]陈清华, 张国枢, 秦汝祥,等. 热线法同时测松散煤体导热系数及热扩散率[J]. 中国矿业大学学报, 2009, 38(3):336-340. CHEN Qinghua, ZHANG Guoshu, QIN Ruxiang, et al. Measurements of thermal conductivity and diffusivity of loose coal using a hot-wire method[J]. Journal of China University of Mining and Technology, 2009, 38(3):336-340.
[12]王玉枝, 袁安峰. 试验设计中对交互作用的处理[J]. 北京联合大学学报, 2010, 24(4):86-88. WANG Yuzhi, YUAN Anfeng. The treatment of interaction in experimental design[J]. Journal of Beijing Union University, 2010,24(4):86-88.
[13]张泽志, 韩春亮, 李成未. 响应面法在试验设计与优化中的应用[J]. 河南教育学院学报(自然科学版)自然科学版, 2011, 20(4):34-37. ZHANG Zezhi, HAN Chunliang, LI Chengwei. Application of response surface method in experimental design and optimization[J]. Journal of Henan Education Institute(Natural Science ), 2011, 20(4):34-37.
[14]中华人民共和国国家质量监督检验检疫总局. 煤的工业分析方法GB/T212-2008[S]. 北京:中国标准出版社,2008.
[15]张秀云. 基于热重方法的自动煤质工业分析仪研究[J]. 民营科技, 2014(2):56-56. ZHANG Xiuyun. Automatic proximate analyzer for coal based on thermos gravimetric analysis[J]. Private Technological, 2014(2):56-59.
[16]王冬雪, 刘剑, 高科,等. 煤尘挥发分及粒径对爆炸火焰长度的影响研究[J]. 中国安全生产科学技术, 2016, 12(5):43-47. WANG Dongxue, LJIU Jian, GAO Ke, et al. Study on influence to length of explosion flame by volatile content and particle size of coal dust[J]. Journal of Safety Science and Technology, 2016, 12(5):43-47.
[17]包研科, 李娜. 数理统计与MATLAB数据处理[M]. 沈阳:东北大学出版社, 2008.
[18]赵选民. 试验设计方法[M]. 北京:科学出版社, 2006.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51274115);辽宁省教育厅基金项目(L2012122)
更新日期/Last Update: 2017-10-12