|本期目录/Table of Contents|

[1]余修武,刘琴,张枫,等.基于UKF的深井监测移动节点定位算法[J].中国安全生产科学技术,2017,13(9):72-76.[doi:10.11731/j.issn.1673-193x.2017.09.011]
 YU Xiuwu,LIU Qin,ZHANG Feng,et al.Positioning algorithm for mobile nodes monitoring in deep mine based on UKF[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):72-76.[doi:10.11731/j.issn.1673-193x.2017.09.011]
点击复制

基于UKF的深井监测移动节点定位算法()
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年9期
页码:
72-76
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-09-30

文章信息/Info

Title:
Positioning algorithm for mobile nodes monitoring in deep mine based on UKF
文章编号:
1673-193X(2017)-09-0072-05
作者:
余修武123刘琴123张枫123周利兴123胡沐芳13张可13
(1.南华大学 环境保护与安全工程学院,湖南 衡阳 421001;2.金属矿山安全与健康国家重点实验室,安徽 马鞍山 243000;3.湖南省铀尾矿库退役治理技术工程技术研究中心,湖南 衡阳 421001)
Author(s):
YU Xiuwu123 LIU Qin123 ZHANG Feng123 ZHOU Lixing123 HU Mufang13 ZHANG Ke13
(1. School of Environmental Protection and Safety Engineering, University of South China, Hengyang Hunan 421001, China;2. State Key Laboratory of Safety and Health for Metal Mines, Maanshan Anhui 243000, China; 3. Hunan Engineering Technology Research Center for Uranium Tailings Decommission and Treatment, Hengyang Hunan 421001, China)
关键词:
无线传感器网络深矿井UKF定位移动节点
Keywords:
wireless sensor network deep mine UKF positioning mobile node
分类号:
X913
DOI:
10.11731/j.issn.1673-193x.2017.09.011
文献标志码:
A
摘要:
针对线性系统理论的监测定位技术误差较大且又无法实时监测深井人员及移动设备的位置问题,提出一种基于非线性函数不敏卡尔曼滤波(UKF)移动节点定位算法(U-MPA)。在建立U-MPA监测系统及巷道模型的基础上,采用UKF方法对RSSI滤波测距,通过局部坐标系,实现对移动节点实时定位监测;同时,通过改变锚节点间距密度,实现不同定位精度要求。仿真实验表明:U-MPA算法相比RSSI算法定位误差有明显减小,U-MPA算法的平均定位偏差为RSSI算法的44%。
Abstract:
Aiming at the problems that the monitoring positioning technology of linear system theory has a large error and can’t monitor the positions of personnel and mobile equipments in deep mine in real-time, a positioning algorithm for mobile nodes based on the nonlinear function unscented kalman filter (UKF) was put forward, namely U-MPA. On the basis of establishing the U-MPA monitoring system and the roadway model, the UKF method was applied to filter ranging for RSSI, and the positioning monitoring of the mobile nodes in real-time was realized through the local coordinate system. Meanwhile, different positioning accuracy requirements were achieved by changing the spacing density of anchor node. The simulation experiments showed that the positioning error of U-MPA algorithm was significantly smaller compared with RSSI algorithm, and the average positioning deviation of U-MPA algorithm was 44% of that by RSSI algorithm.

参考文献/References:

[1]余修武,范飞生,李睿,等.基于接收信号强度分区矿山无线定位算法[J].中国安全生产科学技术,2015,11(9):70-75.YU Xiuwu,FAN Feisheng,LI Rui,et al.Study on wireless positioning algorithm in mine based on received signal strength partition[J]. Journal of Safety Science and Technology, 2015,11(9):70-75.
[2]冀汶莉,马晴,贾东.井下移动目标定位跟踪关键技术[J].西安科技大学学报,2016,36(1):132-138.JI Wenli, MA Qing, JIA Dong. Key technology of locating and tracking mobile object in underground mines[J]. Journal of Xi’an University of Science and Technology, 2016,36(1):132-138.
[3]李宁,王李管,贾明涛,等.基于改进遗传算法的矿井人员定位新算法[J].中南大学学报(自然科学版),2016,47(3):929-935.LI Ning,WANG Liguan, JIA Mingtao,et al.New personnel localization algorithm in mine based on improved genetic algorithm[J]. Journal of Central South University, 2016,47(3):929-935.
[4]Sun J P, Li C X. Mine TOA geometric positioning method based on improved mean filtering and parameter fitting[J]. Meitan Xuebao/journal of the China Coal Society, 2015, 40(5):1206-1212.
[5]黄晓鹏. 无线传感器网络中移动信标节点的路径规划与定位算法研究[D].南京:南京大学,2015.
[6]Ye M, Wang Y P. Location estimation in wireless sensor networks based on probabilistic model with variant variance and evolutionary algorithm[J]. Journal of Software, 2013, 24(4):859-872.
[7]乔钢柱, 曾建潮. 信标节点链式部署的井下无线传感器网络定位算法[J]. 煤炭学报, 2010, 35(7):1229-1233.QIAO Gangzhu, ZENG Jianchao. Localization algorithm of beacon nodes chain deployment based on coal mine underground wireless sensor networks[J].Journal of China Coal Society,2010,35(7):1229-1233.
[8]王红旗, 刘勇, 罗宇锋. 段序号可动态识别的矿井人员无线全局定位[J]. 计算机工程与应用, 2014, 50(19):245-248.WANG Hongqi, LIU Yong, LUO Yufeng. Wireless global positioning of mine personnel with dynamically identifiable segmental serials[J]. Computer Engineering and Applications,2014,50(19): 245-248.
[9]王建平,徐恒,李奇越.基于卡尔曼滤波的矿井移动节点定位算法研究[J].电子测量与仪器学报,2013,27(2):120-126.WANG Jianping,XU Heng,LI Qiyue.Research of algorithm for mobile node localization in mine based on kalman filtering[J]. Journal of Electronic Measurement and Instrument, 2013,27(2):120-126.
[10]王妍,邓庆绪,刘赓浩,等.结合运动方程与卡尔曼滤波的动态目标追踪预测算法[J].计算机科学,2015,42(12):76-81.WANG Yan, DENG Qingxu,LIU Genghao,et al. Dynamic target tracking and predicting algorithm based on combination of motion equation and kalman filter[J]. Computer Science, 2015,42(12):76-81.
[11]蒋鹏,宋华华,王兴民.基于动态生成树和改进不敏卡尔曼滤波的传感器网络目标跟踪算法研究[J].仪器仪表学报,2015,36(2):415-421.JIANG Peng, SONG Huahua, WANG Xingmin. Target tracking algorithm for sensor networks based on dynamic spanning tree and improved unscented kalman filter[J]. Chinese Journal of Scientific Instrument,2015,36(2):415-421.
[12]Zhen-Tao H U, Jin Z, Zhen G. Unscented kalman probability hypothesis density filter based on interacting multiple model[J]. Control & Decision, 2016.
[13]于洪波,王国宏,孙芸,等.一种融合UKF和EKF的粒子滤波状态估计算法[J].系统工程与电子技术,2013,35(7):1375-1379.YU Hongbo,WANG Guohong, SUN Yun,et al. Particle filtering algorithm of state estimation on fusion of UKF and EKF[J]. System Engineering and Electronics,2013,35(7):1375-1379.
[14]李菲菲. WSN煤矿瓦斯浓度监测系统时间同步技术研究[D].徐州:中国矿业大学,2015.
[15]李猛. 矿井安全监控系统结构及无线定位技术研究[D].重庆:重庆大学,2012.

相似文献/References:

[1]桑海泉,康荣学.基于无线传感网络的安全监控系统应用研究[J].中国安全生产科学技术,2013,9(7):118.[doi:10.11731/j.issn.1673-193x.2013.07.021]
 SANG Hai quan,KANG Rong xue.Application of safety monitoring system based on wireless sensor network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(9):118.[doi:10.11731/j.issn.1673-193x.2013.07.021]
[2]余修武,范飞生,李睿,等.基于接收信号强度分区矿山无线定位算法[J].中国安全生产科学技术,2015,11(9):70.[doi:10.11731/j.issn.1673-193x.2015.09.011]
 YU Xiu-wu,FAN Fei-sheng,LI Rui,et al.Study on wireless positioning algorithm in mine based on received signal strength partition[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):70.[doi:10.11731/j.issn.1673-193x.2015.09.011]
[3]余修武,张枫,范飞生,等.基于铀尾矿库核素污染监测WSN分簇路由协议[J].中国安全生产科学技术,2016,12(10):154.[doi:10.11731/j.issn.1673-193x.2016.10.026]
 YU Xiuwu,ZHANG Feng,FAN Feisheng,et al.Study on clustering routing protocol of WSN for radionuclide contamination monitoring in uranium tailings[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):154.[doi:10.11731/j.issn.1673-193x.2016.10.026]
[4]余修武,张可,周利兴,等.基于误差修正距离约束的深井巷道目标定位算法[J].中国安全生产科学技术,2017,13(5):68.[doi:10.11731/j.issn.1673-193x.2017.05.011]
 YU Xiuwu,ZHANG Ke,ZHOU Lixing,et al.Study on target location algorithm of deep mine roadway with distance constraint based on error correction[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):68.[doi:10.11731/j.issn.1673-193x.2017.05.011]
[5]余修武,范飞生,夏凡,等.铀尾矿库WSN安全监控镜像约束域定位算法[J].中国安全生产科学技术,2017,13(11):90.[doi:10.11731/j.issn.1673-193x.2017.11.015]
 YU Xiuwu,FAN Feisheng,XIA Fan,et al.Constraint region location algorithm of WSN safety monitoring image in uranium tailings[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):90.[doi:10.11731/j.issn.1673-193x.2017.11.015]
[6]余修武,梁北孔,周利兴,等.基于网络分区和路径能耗的深井无线传感器网络多簇首路由算法[J].中国安全生产科学技术,2019,15(1):32.[doi:10.11731/j.issn.1673-193x.2019.01.005]
 YU Xiuwu,LIANG Beikong,ZHOU Lixing,et al.Study on multiple cluster head routing algorithm of wireless sensor network in deep mine based on network partition and path energy consumption[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(9):32.[doi:10.11731/j.issn.1673-193x.2019.01.005]

备注/Memo

备注/Memo:
金属矿山安全与健康国家重点实验室开放基金项目(2016-JSKSSYS-04);湖南省教育厅科研重点项目(15A161);湖南省重点研发项目(2015SK2005);南华大学环境保护与安全工程学院研究生科研创新项目(2017YCXXM08);南华大学大学生研究性学习和创新性实验计划项目(2017XJYZ029)
更新日期/Last Update: