|本期目录/Table of Contents|

[1]廖柠,黄坤,孔令圳,等.基于动态实验的玻璃钢原油管道结垢规律研究[J].中国安全生产科学技术,2017,13(9):35-40.[doi:10.11731/j.issn.1673-193x.2017.09.005]
 LIAO Ning,HUANG Kun,KONG Lingzhen,et al.Study on scaling laws of FRP crude oil pipeline based on dynamic experiment[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):35-40.[doi:10.11731/j.issn.1673-193x.2017.09.005]
点击复制

基于动态实验的玻璃钢原油管道结垢规律研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年9期
页码:
35-40
栏目:
学术论著
出版日期:
2017-09-30

文章信息/Info

Title:
Study on scaling laws of FRP crude oil pipeline based on dynamic experiment
文章编号:
1673-193X(2017)-09-0035-06
作者:
廖柠1黄坤1孔令圳1吴锦2
(1.西南石油大学 石油与天然气工程学院,四川 成都 610500; 2.中国葛洲坝集团机电建设有限公司,四川 成都 610031)
Author(s):
LIAO Ning1HUANG Kun1KONG Lingzhen1WU Jin2
(1. College of Oil and Gas Engineering, Southwest Petroleum University, Chengdu Sichuan 610500, China; 2. Electromechanical Construction Co., Ltd., China Gezhouba Group, Chengdu Sichuan 610031, China)
关键词:
玻璃钢管道动态实验结垢规律计算机编程清管周期
Keywords:
fiber reinforced plastics (FRP) pipeline dynamic experiment scaling laws computer programming pigging period
分类号:
TE83
DOI:
10.11731/j.issn.1673-193x.2017.09.005
文献标志码:
A
摘要:
为了研究玻璃钢管道在原油输送过程中的结垢问题,通过搅拌实验的方法对玻璃钢管道内的结垢情况进行了模拟实验,并运用Origin8.0绘图软件拟合得到了基于油品温度、流量以及流动距离的玻璃钢管道原油输送结垢计算公式;采用VB6.0编程语言,对所研究的内容及公式进行编程,通过与新疆HK玻璃钢管线现场清管运行参数对比,对结垢计算公式进行了修正。结果表明:由该程序计算所得玻璃钢管线结垢量情况以及不同位置在不同流量下的结构速率与实验结果吻合,因此,所编程序计算结果能够有效地为玻璃钢管线现场清管周期的确定提供理论依据。
Abstract:
To study the scaling problem of fiber reinforced plastics (FRP) pipeline in the process of crude oil transportation, the simulation experiments were carried out on the scaling situation in FRP pipeline through the method of agitation experiment. The calculation formula of scaling during the crude oil transportation in FRP pipeline based on oil temperature, flow rate and flow distance was obtained through the fitting by using Origin8.0 drawing software. The computer programming software VB6.0 was used to compile the contents and formula obtained above. The calculation formula of scaling was modified by comparing with the field pigging operation parameters of Xinjiang HK FRP pipeline. The results showed that the scaling amount of the FRP pipeline and the scaling rates in different positions under different flow rates obtained by this program were consistent with the experimental results. So the calculation results of the program can provide the theoretical basis for the determination of the field pigging period of FRP pipeline effectively.

参考文献/References:

[1]苏焕荣.玻纤增强塑料管在油田应用的经济性[J].石油规划设计,1995,9(5): 11-12. SU Huanrong, The economical effect of glass fiber reinforced plastic pipe in oilfield[J]. Petroleum Planning & Engineering,1995,9(5): 11-12.
[2]万德立,白云飞.玻璃钢管道及其在油田的应用[J].油气田地面工程,1991,10(6):68-69. WAN Deli,BAI Yunfei. FRP pipeline and its application in oilfield[J]. Oil-Gasfield Surface Engineering,1991,10(6):68-69.
[3]何桂华,等.玻纤增强塑料管道在油田地面工程中的应用[J].石油规划设计,1995,9(5): 18-19. HE Guihua, et al. application of glass fiber reinforced plastic pipeline in oilfield surface Engineering[J]. Petroleum Planning & Engineering, 1995,9(5): 18-19.
[4]朱树兵.玻璃钢管线用于英买力潜山原油集输[J].油气田地面工程,2011(9): 97-98. ZHU Shubing. FRP pipeline for the crude oil gathering and transportation of Qianshan Yingmali[J]. Oil-Gasfield Surface Engineering, 2011(9): 97-98.
[5]Spoo K. corrosion resistance of various glass fiber reinforcements[J]. Journal of the Association of Physicians of India, 2009, 26(10):925-8.
[6]Arikan H. Failure analysis of filament wound composite pipes with an inclined surface crack under static internal pressure[J]. Composite Structures, 2010(92): 182-187.
[7]Cowley T W. Repair of a 50 foot diameter FRP hydrochloric acid storage tank[A]. CORROSION - National Association of Corrosion Engineers Conference and Exposition[C], 2010(3):14-18.
[8]Hawkins, Robert C. Design and installation requirements for FRP pipe[J]. Materials Performance,2010,49(3):70-73.
[9]Avinash P, Pierre M. Effect of FRP pipe scaling on its adhesive bonding strength[J]. The Journal of Adhesion,2012,88(10):866-880.
[10]Guillermo R. Use of acoustic emission to evaluate residual strength in FRP pipes after impact damage[J]. Research in Nondestructive Evaluation, 2012,23(4):207-220.
[11]Pramod M, Vaibhav L C. Puja,et al. Lifetime estimation of glass reinforced epoxy pipes in acidic and alkaline environment using accelerated test methodology[J]. Fibers and Polymers, 2014, 15 (9):1935-1940.
[12]张恒,刘洪波.埋地FRP夹砂管道结垢及强度分析[J].武汉理工大学学报,2001, 3(12): 33-36. ZHANG Heng, LIU Hongbo. Scaling and strength analysis of buried FRP sand pipe[J]. Journal of Wuhan University of Technology,,2001, 3(12): 33-36.
[13]宁刚.玻璃钢管道结构设计与性能研究[D].哈尔滨:哈尔滨理工大学,2007.
[14]潘伟卿,种新民,吴锦,等.玻璃钢原油管线结垢特性实验分析[J].天然气与石油, 2015(2): 16-19. PAN Weiqing,ZHONG Xinmin,WU Jin, et al. Perimental analysis on scaling characteristics of FRP crude oil pipeline[J]. Natural Gas and Oil, 2015(2): 16-19.
[15]Wang Z S, Ma X M, Liu Y H, et al. The mechanical behaviour and failure mode of FRP composite steel casing joints[J]. Polymers & Polymer Composites,2016: 91-97.
[16]解红军.油田集输管网结垢机理与防治技术研究[D].长春:吉林大学,2005.
[17]陆柱.油田水处理技术[M].北京:石油工业出版社,1990:144-145.
[18]Kiana P, Ali H, Mohammad R O. Using an electrochemical technique to study the effective variables on morphology and deposition of CaCO3 and BaSO4 at the metal surface[J]. Journal of Crystal Growth, 2012(354): 109-118.
[19]张劲军,黄启玉,严大凡.管输剪切模拟搅拌槽中流体平均剪切率的计算[J].石油学报,2003,2(24):94-96. ZHANG Jinjun,HUANG Qiyu,YAN Dafan. Calculation of fluid average shear rate of shear simulated mixing tank in Piping[J]. Acta Petrolei Sinica, 2003,2(24):94-96.

相似文献/References:

备注/Memo

备注/Memo:
“十三五”国家重点专项(2016YFC0802100);中国工程院咨询研究项目(2015-XZ-37)
更新日期/Last Update: 2017-10-12