|本期目录/Table of Contents|

[1]卢国斌,李晓宇,祖秉辉,等.基于EMD-MFOA-ELM的瓦斯涌出量时变序列预测研究[J].中国安全生产科学技术,2017,13(6):109-114.[doi:10.11731/j.issn.1673-193x.2017.06.018]
 LU Guobin,LI Xiaoyu,et al.Research on time-varying series forecasting of gas emission quantity based on EMD-MFOA-ELM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):109-114.[doi:10.11731/j.issn.1673-193x.2017.06.018]
点击复制

基于EMD-MFOA-ELM的瓦斯涌出量时变序列预测研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年6期
页码:
109-114
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-06-30

文章信息/Info

Title:
Research on time-varying series forecasting of gas emission quantity based on EMD-MFOA-ELM
文章编号:
1673-193X(2017)-06-0109-06
作者:
卢国斌12李晓宇12祖秉辉3董建军3
1.辽宁工程技术大学 矿业学院,辽宁 阜新 123000;2.矿山热动力灾害与防治教育部重点实验室,辽宁 阜新 123000;3.辽宁工程技术大学 矿业技术学院,辽宁 葫芦岛 125100
Author(s):
LU Guobin1 2 LI Xiaoyu1 2 ZU Binghui3 DONG Jianjun3
1. College of Mining, Liaoning Technical University, Fuxin Liaoning 123000, China; 2. Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Fuxin Liaoning 123000, China; 3. College of Mining Technology, Liaoning Technical University, Huludao Liaoning 125100, China
关键词:
绝对瓦斯涌出量经验模态分解修正果蝇算法极限向量机多尺度
Keywords:
absolute gas emission quantity empirical mode decomposition (EMD) modified fruit fly optimization algorithm (MFOA) extreme learning machine (ELM) multi-scale
分类号:
TP183
DOI:
10.11731/j.issn.1673-193x.2017.06.018
文献标志码:
A
摘要:
为准确分析工作面绝对瓦斯涌出量的非平稳特征,实现瓦斯涌出量的准确预测,基于经验模态分解(EMD)、修正的果蝇优化算法(MFOA)和极限学习机(ELM)基本原理,构建瓦斯涌出量的EMD-MFOA-ELM多尺度时变预测模型。通过EMD将瓦斯涌出量时变序列进行深层次分解,获得多尺度本征模态函数(IMF);采用MFOA-ELM对各IMF时变序列建立动态预测模型,等权叠加各预测值,得到模型最终预测结果。以晋煤某矿瓦斯涌出量监测时序样本为例进行研究分析,结果表明:EMD能充分挖掘出监测数据隐含信息,有效降低数据复杂度;该模型预测相对误差为0.024 3%~0.651 0%,平均值仅为0.252 6%,预测精度和泛化能力高于未经EMD分解模型,能很好地适用于非平稳时变序列预测。
Abstract:
In order to accurately analyze the non-stationary characteristics of the absolute gas emission quantity in the working face and realize the accurate forecasting of the gas emission quantity, based on the basic principles of empirical mode decomposition (EMD), modified fruit fly optimization algorithm (MFOA) and extreme learning machine (ELM), a multi-scale time-varying series forecasting model of gas emission quantity based on EMD-MFOA-ELM was established. The time-varying series of gas emission quantity was deeply decomposed to obtain the multi-scale intrinsic mode function (IMF) by using EMD, and a dynamic forecasting model was established for each IMF time-varying series by using MFOA-ELM, then the final forecasting results of the model were obtained by superimposing each forecasting result with the equal weight. Taking the time series samples of gas emission quantity obtained by monitoring in a certain coal mine of Jincheng Coal Group as example, it showed that EMD could fully discover the implicit information and effectively reduce the complexity of the monitoring data. The relative error of the forecasting model was 0.0243%-0.6510%, and the average value was only 0.2526%. The prediction accuracy and generalization ability of the model were higher than that without EMD decomposition, and it can be well applied to non-stationary time-varying series forecasting.

参考文献/References:

[1]吕伏, 梁冰, 孙维吉,等. 基于主成分回归分析法的回采工作面瓦斯涌出量预测[J]. 煤炭学报, 2012, 37(1):113-116. LYU Fu, LIANG Bing, SUN Weiji, et al. Gas emission quantity prediction of working face based on principal component regression analysis method[J]. Journal of China Coal Society, 2012, 37(1):113-116.
[2]皮子坤, 贾宝山, 贾廷贵,等. 煤与瓦斯突出预测综合指标F临界值研究[J]. 中国安全生产科学技术, 2015, 11(9):38-44. PIi Zikun, JIA Baoshan, JIA Tinggui,et al. Study on critical value of comprehensive index F for coal and gas outburst prediction[J]. Journal of Safety Science and Technology, 2015, 11(9):38-44.
[3]付华, 谢森, 徐耀松,等. 基于MPSO-WLS-SVM的矿井瓦斯涌出量预测模型研究[J]. 中国安全科学学报, 2013, 23(5):56-61. FU Hua, XIE Sen, XU Yaosong, et al. Study on MPSO-WLS-SVM-based mine gas emission prediction model [J]. China Safety Science Journal, 2013, 23(5):56-61.
[4]单亚锋, 侯福营, 付华,等. 基于改进极端学习机的混沌时间序列瓦斯涌出量预测[J]. 中国安全科学学报, 2012, 22(12):58-63. SHAN Yafeng, HOU Fuying, FU Hua, et al. Prediction of chaotic time series of gas emission based on improved extreme learning machine[J]. China Safety Science Journal, 2012, 22(12):58-63.
[5]樊保龙, 白春华, 李建平. 基于LMD-SVM的采煤工作面瓦斯涌出量预测[J]. 采矿与安全工程学报, 2013, 30(6):946-952. FAN Baolong, BAI Chunhua, LI Jianping. Forecasting model of coalface gas emission based on LMD-SVM method[J]. Journal of Mining & Safety Engineering, 2013, 30(6):946-952.
[6]李胜, 韩永亮, 李军文. 回采工作面瓦斯涌出量耦合预测模型研究[J]. 计算机工程与应用, 2015, 51(16):1-5. LI Sheng, HAN Yongliang, LI Junwen. Research on coupling prediction model for gas emission quantity of working face[J]. Computer Engineering and Applications, 2015, 51(16):1-5.
[7]刘俊娥, 安凤平, 林大超,等. 采煤工作面瓦斯涌出量的固有模态SVM建模预测[J]. 系统工程理论与实践, 2013, 33(2):505-511. LIU June, AN Fengping, LIN Dachao, et al. Prediction of gas emission from coalface by intrinsic model SVM modeling [J]. Systems Engineering-Theory&Practice, 2013, 33(2):505-511.
[8]时培明, 丁雪娟, 李庚,等. 一种EMD改进方法及其在旋转机械故障诊断中的应用[J]. 振动与冲击, 2013, 32(4):185-190. SHI Peiming, DING Xuejun, LIGeng, et al. An improved method of EMD and its applications in rotating machinery fault diagnosis[J]. Journal of Vibration and Shock, 2013, 32(4):185-190.
[9]张淑清, 翟欣沛, 董璇,等. EMD及Duffing振子在小电流系统故障选线方法中的应用[J]. 中国电机工程学报, 2013, 33(10):161-167. ZHANG Shuqing, ZHAI Xinpei, DONG Xuan, et al. Application of EMD and duffing oscillator to fault line detection in Un-effectively grounded system[J]. Proceedings of the CSEE, 2013, 33(10):161-167.
[10]付华, 李海霞, 卢万杰,等. 一种改进的极限学习机煤与瓦斯突出预测模型[J]. 传感技术学报, 2016, 29(1):69-74. FU Hua, LI Haixia, LU Wanjie, et al. A prediction model of coal and gas outburst based on improved extreme learning machine. Chinese Journal of Sensors and Actuators, 2016, 29(1):69-74.
[11]朱志洁,张宏伟. 基于GA-ELM的冲击地压危险性预测研究[J]. 中国安全生产科学技术,2014,10(8):46-51. ZHU Zhijie, ZHANG Hongwei. Study on hazard prediction of rock burst based on GA-ELM[J]. Journal of Safety Science and Technology, 2014, 10(8):46-51.
[12]李彬, 李贻斌. 基于ELM学习算法的混沌时间序列预测[J]. 天津大学学报, 2011,44(8):701-704. LI Bin, LI Yibin. Chaotic time series prediction based on ELM learning algorithm[J]. Journal of Tianjin University, 2011,44(8):701-704.
[13]皮子坤, 贾宝山, 贾廷贵,等. 煤矿瓦斯涌出量动态预测的PCA-MFOA-GRNN模型及应用[J]. 传感技术学报, 2015, 28(11):1676-1681. PI Zikun, JIA Baoshan, JIANG Yangui, et al. Coal mine gas emission dynamic prediction of PCA-MFOA-GRNN model and its application[J]. Chinese Journal of Sensors and Actuators, 2015, 28(11):1676-1681.
[14]张宏伟, 朱志洁, 霍丙杰,等. 基于改进的FOA-SVM导水裂隙带高度预测研究[J]. 中国安全科学学报, 2013, 23(10):9-14. ZHANG Hongwei, ZHU Zhijie, HUO Bingjie, et al. Water Flowing Fractured Zone Height Prediction Based on Improved FOA-SVM[J]. China Safety Science Journal, 2013, 23(10):9-14.
[15]李胜, 韩永亮. 基于MFOA-SVR露天矿边坡变形量预测研究[J]. 中国安全生产科学技术, 2015, 11(1):11-16. LI Sheng, HAN Yongliang. Research on forecasting of slope deformation in open-pit mine based on MFOA-SVR[J]. Journal of Safety Science and Technology, 2015, 11(1):11-16.

相似文献/References:

备注/Memo

备注/Memo:
辽宁省教育厅项目(L2014126);辽宁省自然科学基金项目(201602349)
更新日期/Last Update: 2017-07-11