|本期目录/Table of Contents|

[1]王倩琳,张来斌,胡瑾秋,等.多角度辨识压裂套管变形的失效影响因素[J].中国安全生产科学技术,2017,13(6):40-46.[doi:10.11731/j.issn.1673-193x.2017.06.006]
 ANG Qianlin,ZHANG Laibin,HU Jinqiu,et al.Multiple angles identification on failure influence factors of fracturing casing de-formation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):40-46.[doi:10.11731/j.issn.1673-193x.2017.06.006]
点击复制

多角度辨识压裂套管变形的失效影响因素
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年6期
页码:
40-46
栏目:
学术论著
出版日期:
2017-06-30

文章信息/Info

Title:
Multiple angles identification on failure influence factors of fracturing casing de-formation
文章编号:
1673-193X(2017)-06-0040-07
作者:
王倩琳1张来斌1胡瑾秋1王海涛2李奎为2贺维维1
1. 中国石油大学北京 机械与储运工程学院,北京 102249;2. 中国石油化工股份有限公司 石油工程技术研究院,北京 100101
Author(s):
ANG Qianlin1 ZHANG Laibin1 HU Jinqiu1 WANG Haitao2 LI Kuiwei2 HE Weiwei1
1. College of Mechanical and Transportation Engineering, China University of Petroleum - Beijing, Beijing 102249, China; 2. SINOPEC Research Institute of Petroleum Engineering, Beijing 100101, China
关键词:
多角度辨识压裂套管套管变形失效影响因素有限元模拟
Keywords:
multiple angles identification fracturing casing casing deformation failure influence factor finite element simulation
分类号:
X913.4
DOI:
10.11731/j.issn.1673-193x.2017.06.006
文献标志码:
A
摘要:
页岩气开发具有施工压力大、排量大、改造规模大的特点,使得压裂套管处于复杂力学环境中。挤压、剪切和弯曲等载荷共同作用,易引发套管挤毁变形,进而导致后续作业时井下工具下入遇阻。但目前研究多针对压裂套管的单一失效原因,难以保障其完整可靠性。鉴于此,针对页岩气大规模压裂作业特点,从不同薄弱位置(如垂直段、造斜段、水平段)、不同自身规格(如钢级、外径、壁厚)和不同约束条件(如内压、孔径、螺距)等多角度,系统辨识套管变形的失效影响因素。通过建立压裂套管三维模拟的有限元模型,分析套管内压变化引起套管应力、位移的变化规律及形态,明确套管变形的大小以及与载荷变化的关系,并揭示套管变形的位置及影响因素的临界值。结果表明:压裂套管的造斜段最大变形、水平段应力集中现象较为严重,属于危险脆弱点;且套管最大应力、最大位移随内压的增加而近似成线性降低关系。
Abstract:
In the process of shale gas exploitation, some characteristics such as large construction pressure, large displacement, and large transformation scale could lead the fracturing casing into the complicated mechanical environment. Under the combined effect of extrusion, shear and bend load, it is easy to cause the collapse and deformation of casing, thus result in the encountered resistance of the running downhole tools during the subsequent operation. However, many current studies focus on the single failure cause of fracturing casing, which is hard to guarantee its integrity and reliability. In view of this, aiming at the characteristics of large-scale fracturing operation for shale gas, the failure influence factors of casing deformation were identi-fied systematically from multiple angles, such as different weak points (e.g. vertical, deflecting and horizontal sections), different own specifications (e.g. steel grade, external diameter and wall thickness) and different constraint conditions (e.g. internal pressure, bore diameter and thread pitch). Through establishing the finite element model for three-dimensional simulation of fracturing casing, the change rules and forms of casing stress and displacement caused by the change of internal pressure of cas-ing were analyzed. The amount of casing deformation and the relationship between it and the load change were clarified, and the location of casing deformation and the critical values of influence factors were revealed. The results showed that the phe-nomena of the maximum deformation in the deflecting sections and the stress concentration in the horizontal sections of fracturing casing were more serious, which belong to the risk weak points. In addition, the maxi-mum stress and the maximum displacement of casing presented linear decrease relationship with the increas-ing internal pressure approximately.

参考文献/References:

[1]薛承瑾. 页岩气压裂技术现状及发展建议[J]. 石油钻探技术, 2011, 39(3): 24-29. XUE Chengjin. Technical advance and development proposals of shale gas fracturing [J]. Drilling petroleum techniques, 2011, 39(3): 24-29.
[2]唐颖, 张金川, 张琴, 等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业, 2010, 30(10): 33-38. TANG Ying, ZHANG Jinchuan, ZHANG Qin, et al. An analysis of hydraulic fracturing technology in shale gas wells and its application [J]. Natural gas industry, 2010, 30(10): 33-38.
[3]吴奇, 胥云, 王晓泉, 等. 非常规油气藏体积改造技术——内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352-358. WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: Connotation, optimization design and implementation [J]. Petroleum Exploration and Development, 2012, 39(3): 352-358.
[4]吴奇, 胥云, 王腾飞, 等. 增产改造理念的重大变革——体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7-12. WU Qi, XU Yun, WANG Tengfei, et al. The revolution of reservoir stimulation: an introduction of volume fracturing [J]. Natural gas industry, 2011, 31(4): 7-12.
[5]唐波. 油层段套管损坏机理研究[D]. 成都: 西南石油大学, 2003.
[6]于浩, 练章华, 林铁军, 等. 页岩气体积压裂过程中套管失效机理研究[J]. 中国安全生产科学技术, 2016, 12(10): 37-43. YU Hao, LIAN Zhanghua, LIN Tiejun, et al. Study on failure mechanism of casing in stimulated reservoir volume fracturing of shale gas [J]. Journal of Safety Science and Technology, 2016, 12(10): 37-43.
[7]于浩, 练章华, 徐晓玲, 等. 页岩气直井体积压裂过程套管失效的数值模拟[J]. 石油机械, 2015, 43(3): 73-77. YU Hao, LIAN Zhanghua, XU Xiaoling, et al. Numerical simulation for casing failure during volumetric fracturing of shale gas vertical wells [J]. China Petroleum Machinery, 2015, 43(3): 73-77.
[8]于浩, 练章华, 林铁军. 页岩气压裂过程套管失效机理有限元分析[J]. 石油机械, 2014, 42(8): 84-88. YU Hao, LIAN Zhanghua, LIN Tiejun. Finite element analysis of failure mechanism of casing during shale gas fracturing [J]. China Petroleum Machinery, 2014, 42(8): 84-88.
[9]于浩. 体积压裂过程中套管失效机理研究[D]. 成都: 西南石油大学, 2015.
[10]Daneshy A A. Impact of off-balance fracturing on borehole stability & casing failure [R]. SPE 93620, 2005.
[11]Lian Z H, Yu H, Lin T J, et al. A study on casing deformation failure during multi-stage hydraulic fracturing for the stimulated reservoir volume of horizontal shale wells [J]. Journal of Natural Gas Science and Engineering, 2015, 23(3): 538-546.
[12] Furui K, Fuh G F, Abdelmalek N, et al. A Comprehensive Modeling Analysis of Borehole Stability and Production-Liner Deformation for Inclined/Horizontal Wells Completed in a Highly Compacting Chalk Formation[J]. Spe Drilling & Completion, 2010, 25(4):530-543.
[13]李金波, 舒欣欣, 郑茂盛. 含缺陷油套管的抗弯曲特性研究[J]. 中国安全生产科学技术, 2006, 2(5): 3-8. LI Jinbo, SHU Xinxin, ZHENG Maosheng. Bending resistant behavior of local defected oil well pipes [J]. Journal of Safety Science and Technology, 2006, 2(5): 3-8.
[14]贾江鸿. 热采井套损机理及套管强度优化设计[J]. 中国安全生产科学技术, 2011, 7(9): 121-125. JIA Jianghong. Casing failure mechanism of thermal production wells and casing strength [J]. Journal of Safety Science and Technology, 2011, 7(9): 121-125.
[15]石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京: 机械工业出版社, 2006.
[16]马欣, 薛涛, 师统麾, 等. 影响凹陷管道安全因素分析[J]. 中国安全生产科学技术, 2016, 12(6): 123-127. MA Xin, XUE Tao, SHI Tonghui, et al. Analysis on influence factors of dent pipeline safety [J]. Journal of Safety Science and Technology, 2016, 12(6): 123-127.
[17]李长俊, 马树锋, 季楚凌, 等. 地面堆载对埋地管道的安全影响分析[J]. 中国安全生产科学技术, 2015, 11(11): 23-28. LI Changjun, MA Shufeng, JI Chuling, et al. Study on influence to safety of buried pipelines caused by ground loads [J]. Journal of Safety Science and Technology, 2015, 11(11): 23-28.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51574263);中国石油化工股份有限公司科学研究与技术开发项目(P14004);中国石油大学(北京)科研基金项目(2462015YQ0403)
更新日期/Last Update: 2017-07-11