|本期目录/Table of Contents|

[1]张鹏,龙会成,李志翔,等.黄土湿陷过程下埋地油气管道力学行为有限元模拟[J].中国安全生产科学技术,2017,13(5):48-55.[doi:10.11731/j.issn.1673-193x.2017.05.008]
 ZHANG Peng,LONG Huicheng,LI Zhixiang,et al.Finite element simulation on mechanical behavior of buried oil/gas pipeline in loess collapse process[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(5):48-55.[doi:10.11731/j.issn.1673-193x.2017.05.008]
点击复制

黄土湿陷过程下埋地油气管道力学行为有限元模拟
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年5期
页码:
48-55
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-05-31

文章信息/Info

Title:
Finite element simulation on mechanical behavior of buried oil/gas pipeline in loess collapse process
文章编号:
1673-193X(2017)-05-0048-08
作者:
张鹏龙会成李志翔秦国晋孙灵
西南石油大学 土木工程与建筑学院,四川 成都 610500
Author(s):
ZHANG Peng LONG Huicheng LI Zhixiang QIN Guojin SUN Ling
School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu Sichuan 610500, China
关键词:
黄土湿陷过程油气管道沉降量管道应力和变形回归分析湿陷区范围
Keywords:
loess collapse process oil & gas pipeline settlement amount stress and deformation of pipeline regression analysis range of collapse area
分类号:
TE973
DOI:
10.11731/j.issn.1673-193x.2017.05.008
文献标志码:
A
摘要:
针对黄土遇水后湿陷产生陷穴并引起埋地管道悬空这一过程中管道的力学行为,以基于弹塑性地基的黄土湿陷区悬空管道力学模型为基础,从湿陷原因和机理出发,建立三维有限元实体模型,模拟了土体湿陷过程和沉降变形,模拟计算结果与理论值和实测值进行了比对验证;进一步的计算和回归分析得到了管道最大位移、最大von Mises应力与地表土体湿陷沉降量的变化规律,同时也得到了最终湿陷情况下管道的von Mises应力分布和湿陷区范围的影响。结果表明:土体湿陷沉降是管道和土体共同作用的结果,湿陷前期管道与土体一起运动,位移和应力增加较快,而管道下方土体脱离管道产生陷穴后则增长较慢;管道最大位移和土体湿陷沉降量间呈对数函数关系,而管道最大von Mises应力和土体湿陷量呈指数函数关系; 湿陷区管段向下弯曲变形会在3个位置形成应力集中区,湿陷区范围增大会引起管道应力和变形的明显增加,且3个区域的最值分布有所不同。
Abstract:
Aiming at the mechanical behavior of buried pipeline during its suspending process caused by sinkhole resulted from loess collapse when encountering water, on the basis of the mechanical model for suspending pipeline in loess collapse area based on elastic-plastic foundation, a three-dimensional finite element solid model was established considering the reasons and mechanisms of collapse. The collapse process and settlement deformation of soil were simulated, and the simulation results were compared and verified with the theoretical solutions and the measured values. The variation laws of the maximum displacement, the maximum von Mises stress of the pipe and the settlement amount of surface soil collapse were obtained in further simulation and regression analysis, and the influence of the von Mises stress distribution of the pipe and the range of collapse area under the situation of final collapse were obtained. The results showed that the settlement of soil collapse is the combined effect of pipe and soil. In the early stage of collapse, the pipe and soil move together, and the displacement and stress increase rapidly, while when the sinkhole occurs after the soil under the pipe separating from the pipe, the increase of the displacement and stress are relatively slow. The maximum displacement of the pipe presents a logarithmic function relationship with the settlement amount of soil collapse, while the maximum von Mises stress of the pipe presents an exponential function relationship with the settlement amount of soil collapse. The downward bending deformation of the pipe section in the collapse area will cause the formation of stress concentration areas in three positions, the increasing range of collapse area will cause the obviously increasing stress and deformation of pipe, and the distribution of the maximum values in three areas are different.

参考文献/References:

[1]杨德彪. 管道湿陷性黄土灾害风险评价技术研究[D]. 成都:西南石油大学,2014.
[2]付攀升,刘高,刘从友,等. 湿陷性黄土区某长输管道黄土陷穴灾害研究[J]. 西部探矿工程,2010,22(2): 21-24. FU Pansheng, LIU Gao, LIU Congyou, et al. The study on the loess sinkhole hazard along a long-distance pipeline in the collapsible loess area[J]. West-china Exploration Engineering, 2010,22(2): 21-24.
[3]蔡柏松,朱建华,杨晓宁. 黄土陷穴对陕京输气管道的危害及处理[J]. 油气储运,2002,21(4): 35-36. CAI Baisong, ZHU Jianhua, YANG Xiaoning. The methodology to protect the loess sinking in Shanxi-Beijing gas transmission pipeline[J]. Oil & Gas Storage and Transportation, 2002, 21(4): 35-36.
[4]杨朝娜,白晓红. 地基塌陷过程中埋地管线的有限元分析[J]. 科学技术与工程,2014,14(33): 266-271. YANG Zhaona, BAI Xiaohong. Numerical analysis for influence of foundation collapse on buried pipelines[J]. Science Technology and Engineering, 2014, 14(33): 266-271.
[5]吴际渊. 地基塌陷对城市地埋管线影响的试验研究及数值分析[D]. 太原:太原理工大学,2013.
[6]巨玉文,吴际渊,贺武斌,等. 地面塌陷对城市地埋管线影响的试验研究及数值分析[J]. 太原理工大学学报,2015,46(1): 64-68. JYU Yuwen, WU Jiyuan, HE Wubin, et al. Experimental study and numerical analysis on influence of urban underground pipelines under the ground collapse[J]. Journal of Taiyuan University of Technology, 2015, 46(1): 64-68.
[7]史永霞. 埋地管线在沉陷情况下的响应分析[D]. 大连:大连理工大学,2007.
[8]Alawaji H A. Leak induced settlement of buried pipelines in collapsible soil[C]// International Pipelines Conference. 2008:1-10.
[9]LIU C G, ZHANG S B. The response analysis for buried pipelines in nuclear power plant subjected to the subsidence[C]// China-Japan-Us Trilateral Symposium on Lifeline Earthquake Engineering. 2013:192-199.
[10]WANG X, SHUAI J, YE Y, et al. Investigating the effects of mining subsidence on buried pipeline using finite element modeling[C]// International Pipeline Conference. 2008:601-606.
[11]柳春光,史永霞. 沉陷区域埋地管线数值模拟分析[J]. 地震工程与工程振动,2008,28(4): 178-183. LIU Chunguang, SHI Yongxia. Numerical analysis of buried pipelines subjected to the settlement[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(4): 178-183.
[12]胡煜文. 场地震陷对地下管线影响研究[D]. 哈尔滨:中国地震局工程力学研究所,2008.
[13]韩腾飞,赵子皓. 土体塌陷下各参数对埋地管线的影响[J]. 科学技术与工程,2013,13(25): 7588-7590. HAN Tengfei, ZHAO Zihao. The impact of buried pipeline by change different parameter under the condition of soil collapsing[J]. Science Technology and Engineering, 2013, 13(25): 7588-7590.
[14]张鹏,魏韡,崔立伟,等. 地表冲沟条件下悬空管道的力学模型与延寿分析[J]. 天然气工业,2014,34(4): 142-148. ZHANG Peng, WEI Wei, CUI Liwei,et al. A mechanical model and life extension analysis of the suspended pipelines under the condition of geological gulch [J]. Natural Gas Industry, 2014, 34(4): 142-14
[15]马廷霞,吴锦强,唐愚. 成品油管道的极限悬空长度研究[J]. 西南石油大学学报自然科学版,2012,34(4): 165-173. MA Tingxia, WU Jinqiang, TANG Yu. Maximum suspended length of production pipeline[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(4): 165-173.
[16]王同涛,闫相祯,杨秀娟. 基于弹塑性地基模型的湿陷性黄土地段悬空管道受力分析[J]. 中国石油大学学报自然科学版,2010,34(4):113-118. WANG Tongtao, YAN Xiangzhen, YANG Xiujuan. Force analysis of suspended pipeline in collapsible loess areas based on elastic-plastic foundation model[J]. Journal of China University of Petroleum(Science & Technology Edition), 2010, 34(4): 113-118.
[17]魏孔瑞,姚安林,张照旭. 埋地油气管道悬空沉降变形失效评估方法研究[J]. 中国安全科学学报,2014,24(6): 68-73. WEI Kongrui, YAO Anlin, ZHANG Zhaoxu. Study on method for assessing failure of settlement and deformation of buried oil and gas suspended pipelines[J]. China Safety Science Journal, 2014, 24(6): 68-73.
[18]胡宇秋. 基于ANSYS降雨对黄土边坡稳定性影响的分析[J]. 中外建筑,2015(7): 179-182. HU Yuqiu. The influence of rainfall on loess slope stability based on ANSYS [J]. Chinese and Overseas Architecture, 2015(7): 179-182.
[19]尚尔京. 川气东送工程中地层塌陷及土壤液化区段管道安全评估 [D]. 青岛:中国石油大学(华东),2009.
[20]帅健,于桂杰. 管道及储罐强度设计 [M]. 北京:石油工业出版社,2006: 17-18,55.

相似文献/References:

[1]辜冬梅,姚安林,尹旭东,等.基于层次-模糊评价法的山区油气管道 地质灾害易发性研究[J].中国安全生产科学技术,2012,8(5):52.
 GU Dong mei,YAO An lin,YIN Xu dong,et al.Study on occurrence of geological hazards for oil and gas pipelines through the mountains based on AHPfuzzy evaluation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(5):52.
[2]郑登锋,蒋金生,王明勇.基于风险矩阵和LOPA的风险评价系统在油气管道 的应用研究[J].中国安全生产科学技术,2012,8(10):76.
 ZHENG Deng feng,JIANG Jin sheng,WANG Ming yong.Study on application of risk evaluation system based on risk matrix and LOPA in oil and gas pipeline system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(5):76.
[3]王全国,贺帅斌,党文义.油气管道安全预警技术性能评估研究[J].中国安全生产科学技术,2013,9(1):98.
 WANG Quan guo,HE Shuai bin,et al.Study on performance evaluation of safety prewarning technology on oil and gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):98.
[4]康乐,姚安林,关惠平,等.急倾斜煤层采空区地表移动盆地对油气管道安全影响分析[J].中国安全生产科学技术,2013,9(9):102.[doi:10.11731/j.issn.1673-193x.2013.09.019]
 KANG Le,YAO An lin,GUAN Hui pin,et al.Safety influence analysis of subsidence trough on oil & gas pipeline in steeply inclined coalmining area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):102.[doi:10.11731/j.issn.1673-193x.2013.09.019]
[5]樊文有,陈 叶,李云海.基于地理信息系统的油气管道安全管理研究[J].中国安全生产科学技术,2009,5(4):175.
 FAN Wen you,CHEN Ye,Li Yun hai.Study on safety management system of gasoil pipeline based on GIS[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(5):175.
[6]鲜涛,姚安林,李熠辰,等.基于属性识别理论的油气管道施工质量风险评价[J].中国安全生产科学技术,2015,11(4):95.[doi:10.11731/j.issn.1673-193X.2015.04.015]
 XIAN Tao,YAO An-lin,LI Yi-chen,et al.Risk assessment on constructing quality of oil & gas pipeline based on attribute recognition theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(5):95.[doi:10.11731/j.issn.1673-193X.2015.04.015]
[7]王如君.灰色-马尔科夫链模型在埋地油气管道腐蚀预测中的应用[J].中国安全生产科学技术,2015,11(4):102.[doi:10.11731/j.issn.1673-193X.2015.04.016]
 WANG Ru-jun,WANG Tian-yu.Application of grey Markov chain model in corrosion forecast of buried oil and gas pipelines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(5):102.[doi:10.11731/j.issn.1673-193X.2015.04.016]
[8]张杰,梁政,韩传军,等.落石冲击作用下架设油气管道响应分析[J].中国安全生产科学技术,2015,11(7):11.[doi:10.11731/j.issn.1673-193x.2015.07.002]
 ZHANG Jie,LIANG Zheng,HAN Chuan-jun,et al.Analysis on response of overhead oil and gas pipeline impacted by rock-fall[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(5):11.[doi:10.11731/j.issn.1673-193x.2015.07.002]
[9]冯晓东,张圣柱,王如君,等.加拿大油气管道安全管理体系及其启示[J].中国安全生产科学技术,2016,12(6):180.[doi:10.11731/j.issn.1673-193x.2016.06.032]
 FENG Xiaodong,ZHANG Shengzhu,WANG Rujun,et al.Study on safety management system of oil and gas pipeline in Canada and its implications[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(5):180.[doi:10.11731/j.issn.1673-193x.2016.06.032]
[10]张圣柱,王如君,多英全,等.国家油气管道地图系统架构探讨[J].中国安全生产科学技术,2016,12(11):164.[doi:10.11731/j.issn.1673-193x.2016.11.028]
 ZHANG Shengzhu,WANG Rujun,DUO Yingquan,et al.Discussion on architecture of national oil and gas pipeline mapping system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(5):164.[doi:10.11731/j.issn.1673-193x.2016.11.028]

备注/Memo

备注/Memo:
国家自然科学基金项目(5974105);中国工程院重大咨询研究项目(2011-ZD-20);高等学校博士学科点专项科研基金(20105121110003)
更新日期/Last Update: 2017-06-09