|本期目录/Table of Contents|

[1]刘斐斐,喻源,张庆武.管道中氢气-空气爆轰的多级泄爆数值模拟研究[J].中国安全生产科学技术,2017,13(4):160-165.[doi:10.11731/j.issn.1673-193x.2017.04.026]
 LIU Feifei,YU Yuan,ZHANG Qingwu.Numerical simulation on multi-level explosion venting for hydrogen-air detonation in pipe[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):160-165.[doi:10.11731/j.issn.1673-193x.2017.04.026]
点击复制

管道中氢气-空气爆轰的多级泄爆数值模拟研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年4期
页码:
160-165
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-04-30

文章信息/Info

Title:
Numerical simulation on multi-level explosion venting for hydrogen-air detonation in pipe
文章编号:
1673-193X(2017)-04-0160-06
作者:
刘斐斐1喻源12张庆武12
1.南京工业大学 安全科学与工程学院,江苏 南京 210009;2.江苏省危险化学品本质安全与控制技术重点实验室,江苏 南京210009
Author(s):
LIU Feifei1 YU Yuan12 ZHANG Qingwu12
1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing Jiangsu 210009, China;2. Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, Nanjing Jiangsu 210009, China
关键词:
管道氢气爆轰多级泄爆数值模拟
Keywords:
pipe hydrogen detonation multi-level explosion venting numerical simulation
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2017.04.026
文献标志码:
A
摘要:
为了研究管道内氢气的爆燃转爆轰及其抑制过程,对单个障碍物管道中氢气-空气混合物燃爆过程以及多级泄爆进行了二维数值模拟。基于氢气-空气19步详细化学反应动力学机理,以及k-ε湍流模型、概率密度函数输运方程和同位网格SIMPLE算法,采用计算流体软件Fluent进行模拟。结果表明:密闭管道无泄爆时,在距点火端1.5 m左右爆燃转为爆轰;泄爆口的位置对管道内氢气-空气预混气体的爆炸参数有重要影响,泄爆口位于管道中部时,能降低管道内爆轰超压,泄爆效果较好;位于管道中部单个泄爆口泄爆时,有效降低爆轰超压,管道中部设置2个泄爆口时,能通过压力和混合气体的泄放将管道中已经发生的爆轰衰减为爆燃;当有3个泄爆口泄爆时,管道中没有发生爆轰,达到良好的泄爆效果。
Abstract:
In order to study the processes of deflagration-to-detonation transition (DDT) of hydrogen in pipe and its suppression, the two-dimensional numerical simulation on the deflagration process and the multi-level explosion venting of hydrogen-air mixture in a pipe with single obstacle was carried out by using FLUENT based on the 19 steps detailed chemical reaction kinetics mechanism of hydrogen-air, the k-ε turbulence model, the probability density function transport equation and the collocated grid SIMPLE algorithm. The results showed that when there was no explosion venting in the closed pipe, the deflagration transited to detonation at the position with 1.5 m from the ignition end. The location of explosion vent had great effect on the explosion parameters of hydrogen-air premixed gas in the pipe. When an explosion vent was at the middle of the pipe, the overpressure of detonation in the pipe decreased, with a better explosion venting effect. When setting two explosion vents at the middle of the pipe, the detonation that had happened in the pipe attenuated to deflagration due to the venting and discharge of pressure and mixed gas. When setting three explosion vents for explosion venting, the detonation did not occur in the pipe, with a good explosion venting effect.

参考文献/References:

[1]张轲, 刘述丽, 刘明明, 等. 氢能的研究进展[J]. 材料导报, 2011, 25(9):116-119. ZHANG Ke, LIU Shuli, LIU Mingming, et al. Research developments of hydrogen energy[J]. Materials Review, 2011, 25(9):116-119.
[2]Pareja J, Burbano H J, Amell A, et al. Laminar burning velocities and flame stability analysis of hydrogen/air premixed flames at low pressure[J]. International Journal of Hydrogen Energy, 2011, 36(10): 6317-6324.
[3]程浩力, 李睿, 刘德俊. 管道燃气爆炸特性实验研究[J].中国安全生产科学技术, 2010,6(4): 23-27. CHENG Haoli, LI Rui, LIU Dejun. Experimental study on the explosion characteristic of combustible gas in pipelines[J]. Journal of Safety Science and Technology, 2010, 6( 4): 23-27.
[4]Zhdan S A, Syryamin A S. Numerical modeling of continuous detonation in non-stoichiometric hydrogen -oxygen mixtures[J]. Combustion, Explosion, and Shock Waves, 2013, 49(1): 69-78.
[5]Ivanov M F, Kiverin A D, Liberman M A. Flame acceleration and DDT of hydrogen-oxygen gaseous mixtures in channels with no-slip walls[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7714-7727.
[6]Blanchard R, Arndt D, Grtz R, et al. Effect of ignition position on the run-up distance to DDT for hydrogen-air explosions[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(2): 194-199.
[7]程关兵, 张旭龙, 李俊仙, 等. 障碍物管道中预混火焰传播物理机理的试验研究[J]. 安全环境与学报, 2014, 14(1): 56-60. CHENG Guanbin, ZHANG Xulong, LI Junxian, et al. Experimental study on the physical mechanism of the premixed flame propagation in the case of an obstructed channel[J]. Journal of Safety and Environment, 2014, 14(1): 56-60.
[8]Silvestrinia M, Genova M, Parisi G, et al. Flame acceleration and DDT run-up distance for smooth and obstacles filled tubes[J]. Journal of Loss Prevention in the Process Industries, 2008, 21 (5): 555-562.
[9]Cooper M G, Fairweather M, Tite J P. On the mechanisms of pressure generation in vented explosions[J]. Combustion and Flame.1986, 65(1):1-14.
[10]胡俊, 万士昕, 浦以康, 等. 柱形容器开口泄爆过程中的火焰传播特性[J]. 爆炸与冲击, 2004, 24(4): 330-336. HU Jun, WAN Shixin, PU Yikang, et al. The characteristics of flame propagation during explosion venting from cylindrical[J]. Explosion and Shock Waves, 2004, 24(4): 330-336.
[11]王志荣, 周超, 师喜林,等. 连通容器内预混气体泄爆过程[J]. 化工学报, 2011, 62(1): 287-291. WANG Zhirong, ZHOU Chao, SHI Xilin, et al. Gas explosion venting of premixed gases in linked vessels[J]. Journal of Chemical Industry and Engineering, 2011, 62(1): 287-291.
[12]尤明伟, 蒋军成, 喻源, 等. 不同管长条件下连通容器预混气体泄爆实验[J]. 化工学报, 2011, 62(10): 2969-2973. YOU Mingwei, JIANG Juncheng, YU Yuan, et al. Experimental premixed flammable gas explosion venting in linked vessels with different pipe length[J]. Journal of Chemical Industry and Engineering, 2011, 62(10): 2969-2973.
[13]Ferrara G, Di B A, Salzano E, et al.CFD analysis of gas explosions vented through relief pipes[J]. Journal of Hazardous Materials, 2006, 137(2): 654-665.
[14]范周琴, 孙明波, 刘卫东. 湍流燃烧的概率密度函数输运方程模型研究[J]. 飞航导弹, 2010, 30 (5): 90-95. FAN Zhouqin, SUN Mingbo, LIU Weidong. The research about PDF transport combustion models of turbulence[J]. Aerodynamic Missile Journal, 2010, 30 (5): 90-95.
[15]Pope S B. PDF methods for turbulent reactive flows[J]. Progress in Energy & Combustion Science, 1985, 11(2):119-192.
[16]Knudsen V, Vaagsaether K, Bjerketvedt D. Experiments with hydrogen-air explosions in a closed pipe with a single obstacle[J]. Proceedings of the European combustion meeting, 2005(4): 3-6.
[17]Vaagsaether K, Knudsen V, Bjerketvedt D. Simulation of flame acceleration and DDT in H2-air mixture with a flux limiter centered method[J]. International Journal of Hydrogen Energy, 2007, 32 (13): 2186-2191.
[18]秦亚欣, 高歌. 火焰加速和爆燃向爆震转变过程的数值模拟及试验验证[J]. 航空动力学报, 2011, 26(7): 1488-1494. QIN Yaxin, GAO Ge. Numerical simulation and experimental study on flame acceleration and deflagration to detonation transition[J]. Journal of Aerospace Power, 2011, 26(7): 1488-1494.
[19]任少峰, 陈先锋, 王玉杰. 泄压口比率对气体泄爆过程中的动力学行为的影响[J]. 煤炭学报, 2011, 36(5): 830-833. REN Shaofeng, CHEN Xianfeng, WANG Yujie, et al. Effect of pressure-orifice ratio on dynamic behavior during gas venting[J]. Journal of China Coal Society, 2011, 36(5): 830-833.

相似文献/References:

[1]程浩力,李睿,刘德俊.管道燃气爆炸特性实验研究[J].中国安全生产科学技术,2010,6(4):23.
 CHENG Hao-li,LI Rui,LIU De-jun.Experimental study on the explosion characteristic of combustible gas in pipelines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(4):23.
[2]陈升国,张延松,刘 建,等.管道内天然气爆炸火焰及压力波传播规律实验研究[J].中国安全生产科学技术,2013,9(10):43.[doi:10.11731/j.issn.1673-193x.2013.10.008]
 CHEN Sheng guo,ZHANG Yan song,LIU Jian,et al.Research on the flame and pressure wave propagation laws of gas explosion in pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(4):43.[doi:10.11731/j.issn.1673-193x.2013.10.008]
[3]刘延雷,秦永泉,盛水平,等.燃料车内氢气泄漏扩散数值模拟研究*[J].中国安全生产科学技术,2009,5(5):5.
 LIU Yan lei,QIN Yong quan,SHENG Shui ping,et al.Numerical investigation on dispersion of hydrogen in hydrogen powered automobiles[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(4):5.
[4]石杰红,许巧祥,龚敏,等.高压燃气管道临近爆破施工安全性及方案研究[J].中国安全生产科学技术,2014,10(11):119.[doi:10.11731/j.issn.1673-193x.2014.11.020]
 SHI Jie-hong,XU Qiao-xiang,GONG Min,et al.Study on safety and plan of blasting work near high pressure gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(4):119.[doi:10.11731/j.issn.1673-193x.2014.11.020]
[5]彭世金,汤海平,丁雅萍,等.管道腐蚀安全评价模型特性研究[J].中国安全生产科学技术,2015,11(3):172.[doi:10.11731/j.issn.1673-193x.2015.03.028]
 PENG Shi-jin,TANG Hai-ping,DING Ya-ping,et al.Study on characteristics of safety assessment model on pipeline corrosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(4):172.[doi:10.11731/j.issn.1673-193x.2015.03.028]
[6]肖国清,冯明洋,张华兵,等.含腐蚀缺陷的X80高钢级管道失效评估研究[J].中国安全生产科学技术,2015,11(6):126.[doi:10.11731/j.issn.1673-193x.2015.06.020]
 XIAO Guo-qing,FENG Ming-yang,ZHANG Hua-bing,et al.Study on failure assessment for X80 high-grade pipeline with corrosion defects[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(4):126.[doi:10.11731/j.issn.1673-193x.2015.06.020]
[7]李翔,王辉.成套装置动态风险管理专家系统[J].中国安全生产科学技术,2015,11(8):192.[doi:10.11731/j.issn.1673-193x.2015.08.032]
 LI Xiang,WANG Hui.An expert system for dynamic risk-management of complete set of equipments[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(4):192.[doi:10.11731/j.issn.1673-193x.2015.08.032]
[8]李长俊,马树锋,季楚凌,等.截断阀室水淹后管道沉降的防护技术研究[J].中国安全生产科学技术,2015,11(12):99.[doi:10.11731/j.issn.1673-193x.2015.12.015]
 LI Chang-jun,MA Shu-feng,JI Chu-ling,et al.Study on protection technology of pipeline settlement in flooded block valve station[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(4):99.[doi:10.11731/j.issn.1673-193x.2015.12.015]
[9]姚安林,曾跃辉,罗珊,等.基于改进二元语义的滑坡诱发管道失效可能性评估[J].中国安全生产科学技术,2017,13(6):68.[doi:10.11731/j.issn.1673-193x.2017.06.011]
 YAO Anlin,ZENG Yuehui,LUO Shan,et al.Evaluation on failure possibility of pipeline induced by landslide based on improved two-tuple linguistic information[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):68.[doi:10.11731/j.issn.1673-193x.2017.06.011]
[10]闫宏伟,马建强,汪洋,等.自锁式管道内封堵装置结构与封堵性能分析[J].中国安全生产科学技术,2017,13(11):27.[doi:10.11731/j.issn.1673-193x.2017.11.005]
 YAN Hongwei,MA Jianqiang,WANG Yang,et al.Analysis on structure and plugging performance of self-locking pipeline in-ner-plugging device[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):27.[doi:10.11731/j.issn.1673-193x.2017.11.005]
[11]帅健,谢丹,王伟,等.管道环焊接头残余应力及氢扩散模拟研究*[J].中国安全生产科学技术,2022,18(3):26.[doi:10.11731/j.issn.1673-193x.2022.03.004]
 SHUAI Jian,XIE Dan,WANG Wei,et al.Simulation study on residual stress and hydrogen diffusion of pipeline girth welded joint[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(4):26.[doi:10.11731/j.issn.1673-193x.2022.03.004]

备注/Memo

备注/Memo:
国家重点研发计划项目(2016YFC0800102);国家自然科学基金重点项目(21436006)
更新日期/Last Update: 2017-05-11