|本期目录/Table of Contents|

[1]李军,张宏,吴锴,等.第三方挖掘作用下PE燃气管道失效行为研究[J].中国安全生产科学技术,2017,13(4):108-116.[doi:10.11731/j.issn.1673-193x.2017.04.018]
 LI Jun,ZHANG Hong,WU Kai,et al.Failure behavior analysis on PE gas pipeline under the effect of third-party excavation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):108-116.[doi:10.11731/j.issn.1673-193x.2017.04.018]
点击复制

第三方挖掘作用下PE燃气管道失效行为研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年4期
页码:
108-116
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-04-30

文章信息/Info

Title:
Failure behavior analysis on PE gas pipeline under the effect of third-party excavation
文章编号:
1673-193X(2017)-04-0108-09
作者:
李军12张宏1吴锴1顾晓婷3夏梦莹1刘啸奔1
1. 中国石油大学北京机械与储运工程学院,北京 102249;2. 中石油昆仑燃气有限公司,北京 100101;3. 长江大学 石油工程学院,湖北 武汉 430100
Author(s):
LI Jun12 ZHANG Hong1 WU Kai1 GU Xiaoting3 XIA Mengying1 LIU Xiaoben1
1. College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China;2. PetroChina Kunlun Gas Co., Ltd., Beijing 100101, China;3. College of Petroleum Engineering, Yangtze University, Wuhan Hubei 430100, China
关键词:
第三方挖掘PE燃气管道管土接触力学响应有限元分析
Keywords:
third party excavation PE gas pipeline pipe-soil contact mechanical response finite element analysis
分类号:
TE973.1
DOI:
10.11731/j.issn.1673-193x.2017.04.018
文献标志码:
A
摘要:
针对挖掘破坏导致的城镇燃气管道失效,开展了挖掘作用下管道力学失效机理分析。考虑管土接触作用,建立了城镇燃气PE管道在挖掘齿作用下的三维力学响应分析模型,分析了典型工况下管道的失效过程,讨论了基于应力准则与基于应变准则等2种失效准则的适用性,并开展了影响因素分析。结果表明:机械齿作用下管道主要失效位置为机械齿与管道接触位置两端;采用基于应变的失效准则可以更好地利用PE管材的塑性性能;机械齿的作用位置对管道力学响应影响较小;管径和壁厚的增大能减小管道内的应力,同时能够减小管道的截面椭圆度;内压的改变对管道的力学响应几乎没有影响。以上结果可为城镇燃气管道的力学失效分析与安全评价提供一定的参考。
Abstract:
Aiming at the failure of urban gas pipeline caused by excavation damage, the mechanical failure mechanism of pipeline under the effect of excavation was analyzed. A three-dimensional mechanical response analysis model for urban PE gas pipeline under the effect of excavation teeth was established considering the pipe-soil contact effect. The failure process of pipeline under typical working conditions was analyzed, then the applicability of two failure criteria, including stress based criterion and strain based criterion, was discussed, and the influence factors were analyzed. The results showed that the main failure positions of pipeline under the effect of excavation teeth are the both ends of contact positions between mechanical teeth and pipeline. Adopting the failure criterion based on strain can better utilize the plastic performance of PE pipeline material. The action position of mechanical teeth has little influence on the response of pipeline. The increase of pipeline diameter and wall thickness can decrease the stress in the pipeline, and decrease the sectional ovality of pipeline at the same time. The change of internal pressure has almost no influence on the mechanical response of pipeline. The results can provide a certain reference for mechanical failure analysis and safety evaluation of urban gas pipeline.

参考文献/References:

[1]李军, 张宏. 城镇燃气管道第三方破坏因素的模糊概率分析[J]. 天然气与石油, 2016, 34(2):109-114. LI Jun, ZHANGHong. Fuzzy probability analysis on the third party damage factor for urban gas pipeline[J]. Natural Gas and Oil, 2016, 34(2):109-114.
[2]Li J, Zhang H, Han Y S, et al. Study on failure of third-party damage for urban gas pipeline based on fuzzy comprehensive evaluation.[J]. PLoS ONE, 2016, 11(11):e0166472.
[3]李军, 张宏, 梁海滨,等. 基于模糊综合评价的燃气管道第三方破坏失效研究[J]. 中国安全生产科学技术, 2016, 12(8):140-145. LI Jun, ZHANG Hong, LIANG Haibin, et al. Study on failure of gas pipeline due to third party damage based on fuzzy comprehensive evaluation[J]. Journal of Safety Science and Technology, 2016, 12(8):140-145.
[4]Brooker D C. Experimental puncture loads for external interference of pipelines by excavator equipment[J]. International Journal of Pressure Vessels & Piping, 2005, 82(11):825-832.
[5]Brooker D C. Numerical modelling of pipeline puncture under excavator loading. Part I. Development and validation of a finite element material failure model for puncture simulation[J]. International Journal of Pressure Vessels & Piping, 2003, 80(10):727-735.
[6]姚安林, 徐涛龙, 李星,等. 基于试验和数值模拟确定挖掘机具作用下埋地输气管道的动载荷[J]. 振动与冲击, 2014, 33(17):39-46. YAO AnLin, XU Taolong, LI Xing, et al. Determining dynamic load on a buried gas pipeline under mining machinery actions based on test and numerical simulation[J]. Journal of Vibration and Shock, 2014, 33(17):39-46.
[7]杨建功, 练章华, 于浩,等. 油气长输管道第三方破坏监测优化仿真研究[J]. 计算机仿真, 2016, 33(2):469-474. YANG Jiangong,LIAN ZhangHua, YU Hao, et al. Simulation of third-party damages to long-distance oil and gas pipelines and study on damage monitoring and optimal[J]. Computer Simulation, 2016, 32(2): 469-474.
[8]Zhang J, Liang Z, Han C, et al. Buckling behaviour analysis of a buried steel pipeline in rock stratum impacted by a rockfall[J]. Engineering Failure Analysis, 2015, 58:281-294.
[9]Zhang J, Liang Z, Feng D, et al. Response of the buried steel pipeline caused by perilous rock impact: Parametric study[J]. Journal of Loss Prevention in the Process Industries, 2016, 43:385-396.
[10]Zhang L, Liang Z, Zhang J. Mechanical response of a buried pipeline to explosion loading[J]. Journal of Failure Analysis and Prevention, 2016, 16(4):1-7.
[11]Guo Y, He L, Wang D, et al. Numerical investigation of surface conduit parallel gas pipeline explosive based on the TNT equivalent weight method[J]. Journal of Loss Prevention in the Process Industries, 2016, 44:360-368.
[12]Luo X, Lu S, Shi J, et al. Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement[J]. Engineering Failure Analysis, 2015, 48:144-152.
[13]Luo X, Ma J, Zheng J, et al. Finite Element Analysis of Buried Polyethylene Pipe Subjected to Seismic Landslide[J]. Journal of Pressure Vessel Technology, 2014, 136(3):031801.
[14]李明阳, 陈国华. 含表面裂纹PE管道临界失稳压力的计算与分析[J]. 塑料工业, 2009, 37(5):38-41. LI Mingyang, CHEN Guohua. Calculation and analysis of the critical buckling pressure of PE pipes with surface crack[J]. China Plastic Industry, 2009, 37(5):38-41.
[15]张宏, 崔红升. 基于应变的管道强度设计方法的适用性[J]. 油气储运, 2012, 31(12):952-954. ZHANG Hong, CUI Hongsheng. The applicability of strain-based pipeline strength design method[J]. Oil and Gas Storage and Transportation, 2012, 31(12): 952-954.
[16]SURESH R D, SUHDHIR K J. Guidelines for seismic design of buried pipeline, IITK-GSDMA-EQ33- V2.0 [S]. Kanpur, India: Authority Gujarat State Disaster Management, 2002.
[17]Canadian Standard Association, Oil and gas pipeline systems, CSA standard Z662-2011 [S]. Mississauga, Ontario, Canada: Canadian Standard Association, 2011.

相似文献/References:

[1]张强,杨玉锋,郑洪龙,等.第三方挖掘作用下管道可靠性评估研究[J].中国安全生产科学技术,2017,13(2):143.[doi:10.11731/j.issn.1673-193x.2017.02.025]
 ZHANG Qiang,YANG Yufeng,ZHENG Honglong,et al.Study on reliability evaluation of pipeline under the effect of third-party excava-tion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):143.[doi:10.11731/j.issn.1673-193x.2017.02.025]

备注/Memo

备注/Memo:
国家重点研发计划课题(2016YFC0802105)
更新日期/Last Update: 2017-05-11