|本期目录/Table of Contents|

[1]刘栋,李夕兵,刘志祥,等.基于STSNN聚类算法的用沙坝矿微震事件活动特征研究[J].中国安全生产科学技术,2017,13(2):74-78.[doi:10.11731/j.issn.1673-193x.2017.02.013]
 LIU Dong,LI Xibing,LIU Zhixiang,et al.Study on activity characteristics of micro-seismic events in Yongshaba mine based on STSNN clustering algorithm[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(2):74-78.[doi:10.11731/j.issn.1673-193x.2017.02.013]
点击复制

基于STSNN聚类算法的用沙坝矿微震事件活动特征研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年2期
页码:
74-78
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-02-28

文章信息/Info

Title:
Study on activity characteristics of micro-seismic events in Yongshaba mine based on STSNN clustering algorithm
文章编号:
1673-193X(2017)-02-0074-05
作者:
刘栋李夕兵刘志祥董陇军周勇勇陈光辉
中南大学 资源与安全工程学院,湖南 长沙 410083
Author(s):
LIU Dong LI Xibing LIU Zhixiang DONG Longjun ZHOU Yongyong CHEN Guanghui
School of Resource and Safety Engineering, Central South University, Changsha Hunan 410083, China
关键词:
STSNN算法聚类分析微震事件活动规律
Keywords:
STSNN algorithm cluster analysis micro-seismic events activity characteristics
分类号:
X43
DOI:
10.11731/j.issn.1673-193x.2017.02.013
文献标志码:
A
摘要:
利用时空共享近邻聚类算法(STSNN)对用沙坝矿微震事件进行聚类分析,通过对噪声率进行有效性评价,最终确定k=6和ΔT=6为该算法的最佳输入参数,识别得到98个微震事件聚集区域,最大类簇有544个微震事件,并且该类簇主要集中在用沙坝矿的断层区域。对该类簇微震事件活动特征进行分析,主要包括微震事件的24 h分布、微震事件活动率、视体积、施密特数及劲度系数,根据活动规律的变化特征,提出微震活动率急剧下降并且累积视体积曲线忽然上升、施密特数和劲度系数先升后降的点作为岩体失稳发生破坏性事件的预警点。通过对微震事件活动规律的研究可为大事件的产生提供有效的预判信息,为保证矿山安全生产发挥重要的作用。
Abstract:
The cluster analysis was conducted on the micro-seismic events in Yongshaba mine by using spatio temporal shared nearest neighbor (STSNN) clustering algorithm. k=6 and ΔT=6 were determined to be the best input parameters of the algorithm through the noise rate and effectiveness evaluation. 98 micro-seismic events gathering areas were identified, and the biggest class cluster consisted of 544 micro-seismic events, and this class cluster mainly concentrated in the fault area of Yongshaba mine. The activity characteristics of micro-seismic events of this class cluster were analyzed, including 24-hour micro-seismic event distribution, activity rate, apparent volume, Schmidt number and stiffness coefficient. According to the variation characteristics of activity law, it was put forward that the point when the micro-seismic activity rate drops sharply and the cumulative apparent volume curve rises suddenly, and the Schmidt number and the stiffness coefficient rise first and then decrease afterwards can be taken as the early-warning point of destructive event of rock instability. The research on activity characteristics of micro-seismic events can provide effective predictive information for the analysis of destructive events, which plays an important role to ensure the work safety of mine.

参考文献/References:

[1]李夕兵. 岩石动力学基础及应用[M]. 北京,科学出版社,2014.
[2]王春来,吴爱祥,刘晓晖.深井开采岩爆灾害微震监测预警及控制技术[M].北京,冶金工业出版社,2013.
[3]周勇勇,李夕兵,刘志祥,等. 高精度三维地下微震台网模糊优选方法[J]. 中国安全生产科学技术,2016, 12(7):82-86. ZHOU Yongyong, LI Xibing, LIU Zhixiang, et al.A fuzzy optimum approach for high precision three-dimensional underground micro-seismic Network [J]. Journal of Safety Science and Technology, 2016, 12(7):82-86.
[4]张楚旋,李夕兵,董陇军,等. 微震监测传感器布设方案评价模型及应用[J]. 东北大学学报(自然科学版),2016(4):594-598,608. ZHANG Chuxuan, LI Xibing, DONG Longjun, et al. Evaluation model of micro-seismic monitoring sensor layout scheme and its application[J].Journal of Northeastern University (Natural Science), 2016(4):594-598,608.
[5]LI X, SHANG X, WANG Z, et al. Identifying P-phase arrivals with noise: An improved Kurtosis method based on DWT and STA/LTA[J]. Journal of Applied Geophysics, 2016, 133: 50-61.
[6]LI X, SHANG X, Morales-Esteban A, et al. Identifying P phase arrival of weak events: the Akaike Information Criterion picking application based on the Empirical Mode Decomposition [J]. Computers & Geosciences, 2016.
[7]张楚旋,李夕兵,董陇军,等. 三函数四指标矿震信号S波到时拾取方法及应用[J]. 岩石力学与工程学报,2015(8):1650-1659. ZHANG Chuxuan, LI Xibing, DONG Longjun, et al. A S-wave phase picking method with four indicators of three functions for micro-seismic signal in mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2015(8):1650-1659.
[8]Linqi HUANG, Xibing LI, Longjun DONG, et al. Relocation method of micro-seismic source in deep mines [J]. Transactions of Nonferrous Metals Society of China, 2016(11):2988-2996.
[9]张飞, 刘德峰, 张衡,等. 基于IMS微震监测系统的微震事件定位精度分析[J]. 中国安全生产科学技术, 2013, 9(6):21-26. ZHANG Fei, LIU Defeng, ZHANG Heng, et al. Location accuracy analysis of the seismic events based on the IMS micro-seismic monitoring system [J]. Journal of Safety Science and Technology, 2013, 9(6):21-26.
[10]GUOyan ZHAO, Ju MA, Long-jun DONG, et al. Classification of mine blasts and micro-seismic events using starting-up features in seismograms[J]. Transactions of Nonferrous Metals Society of China, 2015(10): 3410-3420.
[11]吴爱祥,武力聪,刘晓辉,等. 矿山微地震活动时空分布[J]. 北京科技大学学报,2012,34(6):609-613. WU Aixiang,WU Licong,LIU Xiaohui,et al. Space-time distribution of micro-seismic activities in mines[J].Journal of University of Science and Technology Beijing,2012,34(6):609-613.
[12]谢和平,W. G. Pariseau. 岩爆的分形特征和机理 [J]. 岩石力学与工程学报,1993,12(1):28-37. XIE Heping,Pariseau W G. Fractal character and mechanism of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering,1993,12(1): 28-37.
[13]Hudyma MR. Analysis and interpretation of clusters of seismic events [D]. University of Western Australia, Perth, Australia, 2008.
[14]Liu Q., Deng M., Bi J., Yang, W. A Novel Method for Discovering Spatio-temporal Clusters of Different Sizes, Shapes and Densities in the Presence of Noise [J].International Journal of Digital Earth,2012, 7(2): 138-257.
[15]Berry M, Linoff G. Data Mining Techniques: For Marking, Sales and Customer Support[M]. New York: Wiley, 1997.
[16]Halkidi M, Batistakis Y, Vazirgiannis M. Clustering algorithm and validity measures[A]. Proceedings of 13th International Conference on Scientific and Statistics Database Management[C]. 2001, 3-22.
[17]Pakhira M K, Bandyopadbyay A, Maulik U. Validity index for crisp and fuzzy clustering[J]. Pattern Recognition, 2004, 37(3):487-501.

相似文献/References:

[1]高扬,王雅萱.基于领导生命周期理论的民航飞行机组搭配问题[J].中国安全生产科学技术,2012,8(12):149.
 GAO Yang,WANG Ya xuan.Research on civil aviation flight crew arranging based on  life cycle theory of leadership[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(2):149.
[2]黄敏,章菲菲.基于聚类分析的城乡结合部群体性突发事件归类研究[J].中国安全生产科学技术,2016,12(2):132.[doi:10.11731/j.issn.1673-193X.2016.02.024]
 HUANG Min,ZHANG Feifei.Study on classification of mass emergencies in urban-rural joint areas based on cluster analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(2):132.[doi:10.11731/j.issn.1673-193X.2016.02.024]
[3]刘朝峰,兰玥,张晓博,等.供水管网震后流量监测点的动态分级优化布局研究[J].中国安全生产科学技术,2018,14(1):12.[doi:10.11731/j.issn.1673-193x.2018.01.002]
 LIU Chaofeng,LAN Yue,ZHANG Xiaobo,et al.Study on dynamic classification for layout optimization of post-earthquake flow monitoring points in water supply network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(2):12.[doi:10.11731/j.issn.1673-193x.2018.01.002]

备注/Memo

备注/Memo:
中南大学中央高校基本科研业务费专项资金项目(2016zzts447)
更新日期/Last Update: 2017-03-29