|本期目录/Table of Contents|

[1]熊祖强,刘旭锋,王成,等.高水巷旁充填材料单轴压缩变形破坏与能耗特征分析[J].中国安全生产科学技术,2017,13(1):65-70.[doi:10.11731/j.issn.1673-193x.2017.01.011]
 XIONG Zuqiang,LIU Xufeng,WANG Cheng,et al.Analysis on deformation failure and energy consumption characteristics of high-water roadside filling materials under uniaxial compression[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(1):65-70.[doi:10.11731/j.issn.1673-193x.2017.01.011]
点击复制

高水巷旁充填材料单轴压缩变形破坏与能耗特征分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年1期
页码:
65-70
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-01-31

文章信息/Info

Title:
Analysis on deformation failure and energy consumption characteristics of high-water roadside filling materials under uniaxial compression
文章编号:
1673-193X(2017)-01-0065-06
作者:
熊祖强13 刘旭锋13 王成13 王雨利2 丁子文1
1.河南理工大学 能源科学与工程学院,河南 焦作 454000;2.河南理工大学 材料科学与工程学院,河南 焦作 454000; 3.煤炭安全生产河南省协同创新中心,河南 焦作 454000
Author(s):
XIONG Zuqiang13 LIU Xufeng13 WANG Cheng13 WANG Yuli2 DING Ziwen1
1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China; 2. School of Material Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China; 3. Henan Collaborative Innovation Center of C
关键词:
高水材料单轴压缩微观形貌变形破坏特征
Keywords:
high-water material uniaxial compression micro morphology deformation and failure characteristics
分类号:
TD313
DOI:
10.11731/j.issn.1673-193x.2017.01.011
文献标志码:
A
摘要:
高水巷旁充填材料在煤矿沿空留巷工程中得到了广泛应用,水灰比对其力学性质关系密切。首先通过扫描电镜分析了高水材料的微细观形貌,其次通过 RMT-301伺服试验机对1.3~2.5∶1等6种水灰比的高水材料试样进行了单轴压缩试验,得到了各水灰比试样的全应力-应变曲线,分析了试样的变形特征、强度及破坏特征、能耗特征随水灰比变化的规律。结果表明,高水材料的微观结构为固、液、气构成的多孔海绵状结构;高水材料的变形特征与岩样相似,也大致可分为压密阶段、线弹性阶段、屈服阶段以及峰后应变软化阶段,弹性模量、割线模量和峰值强度等随水灰比提高多呈指数函数关系下降;随着水灰比增大,试样由脆性破坏逐渐过渡到延性破坏;随着水灰比增大,试样吸收的总应变能与可释放弹性应变能均呈指数函数关系下降,而耗散能变化幅度不大。
Abstract:
The high-water roadside filling materials have been widely applied to the engineering of retaining roadways along goaf in coal mine, and its mechanical properties are closely related to the water cement ratio. Firstly, the micro morphology of the high-water material was analyzed by SEM. Then the uniaxial compression tests were conducted on the high-water material samples with six water cement ratios from 1.3∶1 to 2.5∶1 by the RMT-301 servo testing system. The full stress-strain curves of all the samples with different water cement ratios were obtained, and the variation laws of deformation characteristic, strength characteristic, failure characteristic, energy consumption characteristic with the water cement ratio were analyzed. The results showed that the microstructure of high-water material is a porous spongiform structure composed of solid, liquid and gas. The deformation characteristic of high-water material is similar to the rock samples, and it also can be divided into compaction phase, linear elastic phase, yield phase, and post-peak strain softening phase roughly. The elastic modulus, secant modulus and the peak strength decrease by exponential function with the increase of water cement ratio. The samples gradually transit from brittle failure to ductile failure with the increase of water cement ratio. The total strain energy and the released elastic strain energy absorbed by the samples both decrease by exponential function with the increase of water cement ratio, whereas the dissipation energy changes little.

参考文献/References:

[1]杨百顺,唐小山,凌志迁,等.深井开采巷旁充填沿空留巷围岩活动规律研究[J].中国安全生产科学技术,2012,8(6):58-63. YANG Baishun, TANG Xiaoshan, LING Zhiqian, et al. Study on surrounding rock moving law of roadside filling’ s gob-side entry retaining in deep mining [J].Journal of Safety Science and Technology, 2012, 8(6): 58-63.
[2]周华强,侯朝炯,易宏伟,等.国内外高水巷旁充填技术的研究与应用[J].矿山压力与顶板管理,1994(1):1-6. ZHOU Huaqiang, HOU Chaojiong, YI Hongwei, et al. High water at home and abroad research and application of roadside packing technology [J].Ground Pressure and Strata Control,1994(1):1-6.
[3]孙恒虎.高水速凝材料及其应用[M].徐州:中国矿业大学出版社,1993.
[4]孙恒虎.高水固结充填技术的应用研究与进展[A].第六届全国采矿学术会议论文集.北京:中国矿业杂志社,1999.
[5]杨宝贵,孙恒虎,单仁亮.高水固结充填体的抗冲击特性[J].煤炭学报,1999,24(5):485-489. YANG Baogui, SUN Henghu, SHAN Renliang. Impact properties of high water material solidifying backfill body[J].Journal of China Coal Society, 1999,24(5):485-489.
[6]周华强,侯朝炯,王承焕,等.高水充填材料的研究与应用[J].煤炭学报,1992(17):25-28. ZHOU Huaqiang, HOU Chaojiong, WANG Chenghuan, et al. Research and application of high-water materials [J].Journal of China Coal Society,1992(17):25-28.
[7]颜志平,杨航宇,朱赞凌.高水材料应用于软土地基处理的可行性研究[J].广东公路交通,1999(S):72-77. YAN Zhiping. YANG Hangyu, ZHU Zanling. High-water materials used in feasibility study of soft soil foundation treatment[J]. Guangdong Highway Communications, 1999(S): 72-77.
[8]王秋分.钢管高水材料短柱轴心受压力学性能研究[D]. 徐州: 中国矿业大学,2014.
[9]孙春东,张东升,王旭锋,等.大尺寸高水材料巷旁充填体蠕变特性试验研究[J].采矿与安全工程学报,2012,29(4):487-489. SUN Chundong, ZHANG Dongsheng, WANG Xufeng, et al. Large-size test on creep characteristics of high water material for filling body beside roadway[J]. Journal of Mining & Safety Engineering, 2012,29(4):487-489.
[10]何满潮,任晓龙,宫伟力,等.矿山压力对煤矿瓦斯涌出影响实验分析及其控制[J] .煤炭学报, 2016, 41(1): 7-13. HE Manchao, REN Xiaolong, GONG Weili, et al. Experimental analysis of mine pressure influence on gas emission and control[J].Journal of China Coal Society,2016,41(1) :7-13.
[11]中华人民共和国煤炭工业部. 煤与岩石物理力学性质测定方法[M].北京: 中国标准出版社, 1988: 32-33.
[12]王新民,过江,张钦礼,等.高水速凝材料硬化体微观特征分析[J]. 矿业研究与开发,1998,18(2):5-7. WANG Xinmin, GUO Jiang, ZHANG Qinli, et al. Analysis of microscopic properties of hardened mass of accelerating materials with high water content[J]. Mining Research and Development,1998,18(2):5-7.
[13]苏承东,李怀珍,张盛,等. 应变速率对大理岩力学特性影响试验研究[J].岩石力学与工程学报,2013,32(5):943-948. SU Chengdong, LI Huaizhen, ZHANG Sheng, et al. Experimental investigation on effect of strain rate on mechanical characteristic of marble[J].Chinese Journal of Rock Mechanics and Engineering, 2013,32(5):943-948.
[14]尤明庆.岩石的力学性质[M]. 北京:地质出版社,2007:23-24.
[15]张楚旋,戴兵,吴秋红.不同应力路径下岩石卸荷破坏过程的变形特性与能量耗散分析[J]. 中国安全生产科学技术,2014,10(10):35-41. ZHANG Chuxuan, DAI Bing, WU Qiuhong. Analysis on deformation properties and energy dissipation of rock unloading failure process under different stress path [J]. Journal of Safety Science and Technology, 2014,10(10):35-41.

相似文献/References:

[1]黎昕,周宗红,金小川,等.白云岩单轴压缩试验声发射特性研究[J].中国安全生产科学技术,2013,9(10):10.[doi:10.11731/j.issn.1673-193x.2013.10.002]
 LI Xin,ZHOU Zong hong,JIN Xiao chuan,et al.Research on acoustic emission characteristics of dolomites based on uniaxial compression test[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):10.[doi:10.11731/j.issn.1673-193x.2013.10.002]
[2]李东华,熊祖强,王雨利,等.引气剂和聚丙烯纤维对高水材料性质的影响研究[J].中国安全生产科学技术,2016,12(3):54.[doi:10.11731/j.issn.1673-193x.2016.03.010]
 LI Donghua,XIONG Zuqiang,WANG Yuli,et al.Research on influence of air entraining agent and polypropylene fiber on properties of high-water-content material[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(1):54.[doi:10.11731/j.issn.1673-193x.2016.03.010]
[3]刘玉春,赵扬锋,张超,等.含水煤岩单轴压缩微震信号特征试验研究[J].中国安全生产科学技术,2017,13(2):51.[doi:10.11731/j.issn.1673-193x.2017.02.009]
 LIU Yuchun,ZHAO Yangfeng,ZHANG Chao,et al.Experimental research on microseismic signal characteristics of moisture-containing coal and rock in uniaxial compression[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(1):51.[doi:10.11731/j.issn.1673-193x.2017.02.009]
[4]杨伟杰,王文,李东印,等.自然及强制饱和煤样的力学特征试验研究[J].中国安全生产科学技术,2017,13(11):129.[doi:10.11731/j.issn.1673-193x.2017.11.021]
 YANG Weijie,WANG Wen,LI Dongyin,et al.Experimental study on mechanical characteristics of coal samples in natural and forced saturation state[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(1):129.[doi:10.11731/j.issn.1673-193x.2017.11.021]
[5]李克钢,王庭,秦庆词,等.主、次裂隙对岩石变形破坏机制的影响研究[J].中国安全生产科学技术,2019,15(2):181.[doi:10.11731/j.issn.1673-193x.2019.02.029]
 LI Kegang,WANG Ting,QIN Qingci,et al.Study on influence of primary and secondary fractures on deformation and failure mechanism of rock[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(1):181.[doi:10.11731/j.issn.1673-193x.2019.02.029]
[6]冯康武.构造煤分层对煤单轴压缩力学特性影响的颗粒流模拟[J].中国安全生产科学技术,2020,16(6):68.[doi:10.11731/j.issn.1673-193x.2020.06.011]
 FENG Kangwu.Particle flow simulation on influence of tectonic coal stratification on uniaxial compression mechanical properties of coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(1):68.[doi:10.11731/j.issn.1673-193x.2020.06.011]
[7]康向涛,高璐,罗蜚,等.数字散斑技术在煤矿相似模拟实验中的应用*[J].中国安全生产科学技术,2020,16(11):140.[doi:10.11731/j.issn.1673-193x.2020.11.022]
 KANG Xiangtao,GAO Lu,LUO Fei,et al.Application of digital speckle technology in similar simulation test of coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(1):140.[doi:10.11731/j.issn.1673-193x.2020.11.022]
[8]宋宜猛,赵凯杰,杨小彬.单轴压缩条件下预制裂纹红砂岩试样声发射特征研究*[J].中国安全生产科学技术,2021,17(11):131.[doi:10.11731/j.issn.1673-193x.2021.11.020]
 SONG Yimeng,ZHAO Kaijie,YANG Xiaobin.Study on AE characteristics of red sandstone samples with prefabricated crack under uniaxial compression[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(1):131.[doi:10.11731/j.issn.1673-193x.2021.11.020]
[9]史文豹,许庆钊,常聚才,等.不同含水率细砂岩软化效应及裂纹演化规律*[J].中国安全生产科学技术,2024,20(3):118.[doi:10.11731/j.issn.1673-193x.2024.03.017]
 SHI Wenbao,XU Qingzhao,CHANG Jucai,et al.Softening effect and crack evolution law of fine sandstone with different water contents[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(1):118.[doi:10.11731/j.issn.1673-193x.2024.03.017]

备注/Memo

备注/Memo:
国家自然科学基金项目(50908076,51304065,51274088)
更新日期/Last Update: 2017-03-02