|本期目录/Table of Contents|

[1]艾兴,王银辉,毛龙,等.露天开采高温爆破钻孔液态CO2快速降温试验研究[J].中国安全生产科学技术,2017,13(1):5-10.[doi:10.11731/j.issn.1673-193x.2017.01.001]
 AI Xing,WANG Yinhui,MAO Long,et al.Experimental study on borehole rapid cooling by using liquid carbon dioxide in high-temperature blasting of opencast mining[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(1):5-10.[doi:10.11731/j.issn.1673-193x.2017.01.001]
点击复制

露天开采高温爆破钻孔液态CO2快速降温试验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年1期
页码:
5-10
栏目:
学术论著
出版日期:
2017-01-31

文章信息/Info

Title:
Experimental study on borehole rapid cooling by using liquid carbon dioxide in high-temperature blasting of opencast mining
文章编号:
1673-193X(2017)-01-0005-06
作者:
艾兴12王银辉2毛龙2张永明2
1. 辽宁工程技术大学 安全科学与工程学院,辽宁 阜新 123000;2. 煤科集团沈阳研究院有限公司,辽宁 抚顺 113122
Author(s):
AI Xing12 WANG Yinhui2 MAO Long2 ZHANG Yongming2
1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin Liaoning 123000, China;2. China Coal Technology and Engineering Group Shenyang Research Institute, Fushun Liaoning 113122, China
关键词:
露天煤矿高温爆破钻孔降温液态CO2高温火区
Keywords:
opencast coal mine high-temperature blasting borehole cooling liquid CO2 high-temperature fire zone
分类号:
TD751
DOI:
10.11731/j.issn.1673-193x.2017.01.001
文献标志码:
A
摘要:
为提高露天开采过程中高温钻孔爆破的安全性,加快高温区域剥离速度,采用现场试验的方法,研究了液态CO2对高温爆破钻孔的降温规律,证实了采用液态CO2对高温爆破钻孔降温的可行性。试验同时向8个钻孔灌注液态CO2,灌注时间为8 min,钻孔平均灌注量为0.32 m3。试验钻孔深12 m,孔径为140 mm,初始温度在50~120℃之间。试验结果表明:液态CO2对单个钻孔有明显的快速降温效果,降温后钻孔温度从0℃回升至50℃用时15 min以上,满足安全爆破的时间要求;多孔同时进行降温时,受钻孔初始温度及孔内形成干冰的影响,各钻孔温度从0℃回升至50℃的安全爆破时间段不重合,难以满足同时装药、起爆的要求。应针对钻孔的不同情况,进一步改进液态CO2钻孔降温工艺。
Abstract:
In order to improve the safety of high-temperature drill blasting in the process of opencast mining, and increase the stripping speed of high-temperature zone, the cooling rules of liquid carbon dioxide on high-temperature blasting borehole were studied by using the method of field test, and the feasibility of using liquid carbon dioxide for borehole cooling of high-temperature blasting was verified. In the tests, liquid carbon dioxide were poured into eight boreholes simultaneously, the pouring time was 8 minutes, and the average pouring amount of borehole was 0.32 m3. The borehole depth was 12 m, the borehole diameter was 140 mm, and the initial temperatures were between 50℃ and 120℃. The test results showed that liquid carbon dioxide had an obvious rapid cooling effect on single borehole, and the time that the borehole temperature rose again from 0℃ to 50℃ after cooling was above 15 minutes, which could meet the time requirement of safe blasting. When conducting cooling on multiple boreholes at the same time, the time periods of safe blasting that the borehole temperature rose again from 0℃ to 50℃ for each borehole were not coincident due to the influence by initial temperature of borehole and the formation of dry ice in the borehole, which was difficult to meet the requirements of charging and blasting si-multaneously. The borehole cooling technology by liquid carbon dioxide should be further improved according to different conditions of borehole.

参考文献/References:

[1]中华人民共和国国家标准. GB6722—2014爆破安全规[S]. 北京:中国标准出版社,2014.
[2]许晨,李克民,李晋旭,等. 露天煤矿高温火区爆破的安全技术探究[J].露天采矿技术,2010(4): 73-75.XU Chen,LI Kemin,LI Jinxu,et al. Security technology research on high-temperature fire area blasting in surface mine[J]. Opencast Mining Technology,2010(4): 73-75.
[3]周名辉,唐洪佩,杨开山. 露天煤矿高温爆破技术研究[J]. 爆破,2014,31(2): 119-122.ZHOU Minghui, TANG Hongpei, YANG Kaishan. Study of high temperature area blasting in opencast coal mine[J]. Blasting,2014,31(2): 119-122.
[4]张忠温. 浅埋煤层大面积火区快速治理技术实践[J]. 煤炭科学技术,2012,40(9): 64-67.ZHANG Zhongwen. Practice and rapid control technology of large firing zone in shallow depth seam[J]. Coal Science and Technology,2012,40(9): 64-67.
[5]王海燕,冯超,檀学宇,等. 复杂火区条件下煤火圈划和火源位置探测方法及应用[J]. 中国安全生产科学技术,2013,9(7): 95-99.WANG Haiyan,FENG Chao,TAN Xueyu,et al. The combustion zone probing & fire location detecting in complex coal mine fire zone[J]. Journal of Safety Science and Technology,2013,9(7): 95-99.
[6]王涛,张贵峰,廖新旭. 露天煤矿高温火区干冰降温试验研究[J]. 工程爆破,2014,20(4): 45-47.WANG Tao,ZHANG Guifeng,LIAO Xinxu. Experimental study of high temperature area cooling of opencase coal mine by using solid carbon dioxide[J]. Engineering Blasting,2014,20(4): 45-47.
[7]束学来,郑炳旭,李战军,等. 煤矿高温火区爆破技术的研究与应用[J]. 爆破,2015,32(4): 128-132.SHU Xuelai,ZHENG Bingxu,LI Zhanjun,et al. Research and application of blasting technology in high temperature fire area in coal mine[J]. Blasting,2015,32(4): 128-132.
[8]崔晓荣. 露天煤矿高温爆破施工工艺与组织管理[J]. 爆破,2016,33(2): 149-154.CUI Xiaorong. Construction technology and organization of blasting in opencast coal mine with high temperature[J]. Blasting,2016,33(2): 149-154.
[9]李晓虎,万红彬,周桂松,等. 煤矿火区中锡箔纸防水袋注水爆破研究与应用[J]. 爆破,2016,33(1): 110-113.LI Xiaohu,WAN Hongbin,ZHOU Guisong,et al. Research and application of water blasting method with tin foil paper waterproof bag in coal mine of fire area[J]. Blasting,2016,33(1): 110-113.
[10]韩刚,刘生玉,液态二氧化碳灭火技术在实践中的应用[J]. 煤炭技术,2009,28(4):107-109.HAN Gang,LIU Shengyu. Application of liquid carbon dioxide fire extinguishing in practice[J]. Coal Technology,2009,28(4): 107-109.
[11]宋宜猛. 采空区液态二氧化碳惰化降温防灭火技术研究[J]. 中国煤炭,2014(4): 106-109.SONG Yimeng. Research on fire prevention and extinguishment by carbon dioxide in goaf. [J]. China Coal,2014(4):106-109.
[12]Musakaev N G,Shagapov V S. Heat exchange of a borehole with frozen rock[J]. Journal of Engineering Physics & Thermophysics,1998,71(71): 1097-1104.
[13]战国会,俞亚南. 地源热泵有限长圆柱面和圆柱体热源模型[J]. 浙江大学学报(工学版),2011,45(6): 1104-1107.ZHAN Guohui,YU Yanan. Finite long cylindrical surface and cylinder source model of ground source heat pump[J]. Journal of Zhejiagn University (Engineering Science) ,2011,45(6): 1104-1107.
[14]李晓星,胡夏闽,张正威. 竖直埋管换热器热响应半径计算方法[J]. 农业工程学报,2015,31(17): 248-253.LI Xiaoxing,HU Xiamin,ZHANG Zhengwei. Calculation method of thermal response radius for vertical borehole heat exchangers[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(17): 248-253.
[15]王艳,刁乃仁,王京. U型管地热换热器热作用半径的数值模拟[J]. 建筑热能通风空调,2011,30(3): 46-49.WANG Yan,DIAO Nairen,WANG Jing. Numerical simulation on thermal influencing radius of U-tube ground heat exchange[J].Building Energy & Environment,2011, 30(3): 46-49.

相似文献/References:

[1]张宏刚,汪启龙.青藏高原多年冻土区露天煤矿边坡地温预测模型研究*[J].中国安全生产科学技术,2023,19(4):56.[doi:10.11731/j.issn.1673-193x.2023.04.008]
 ZHANG Honggang,WANG Qilong,Study on ground temperature prediction model of open-pit coal mine slope in permafrost area of Qinghai-Tibet Plateau[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(1):56.[doi:10.11731/j.issn.1673-193x.2023.04.008]

备注/Memo

备注/Memo:
国家自然科学基金项目(51404138)
更新日期/Last Update: 2017-03-02