|本期目录/Table of Contents|

[1]夏阳光,陶刚,张礼敬.基于绝热火焰温度多元混合气体可燃性极限的理论预测[J].中国安全生产科学技术,2016,12(9):30-35.[doi:10.11731/j.issn.1673-193x.2016.09.005]
 XIA Yangguang,TAO Gang,ZHANG Lijing.Theoretical prediction on flammable limit of multi-component gas mixture based on adiabatic flame temperature[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):30-35.[doi:10.11731/j.issn.1673-193x.2016.09.005]
点击复制

基于绝热火焰温度多元混合气体可燃性极限的理论预测()
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年9期
页码:
30-35
栏目:
学术论著
出版日期:
2016-09-30

文章信息/Info

Title:
Theoretical prediction on flammable limit of multi-component gas mixture based on adiabatic flame temperature
文章编号:
1673-193X(2016)-09-0030-06
作者:
夏阳光陶刚张礼敬
(南京工业大学 安全科学与工程学院,江苏 南京 210009)
Author(s):
XIA Yangguang TAO Gang ZHANG Lijing
(College of Safety Science and Engineering, Nanjing Tech University, Nanjing Jiangsu 210009, China)
关键词:
混合气体计算绝热火焰温度能量平衡可燃性上限可燃性下限预测模型
Keywords:
gas mixture calculated adiabatic flame temperature energy balance upper flammable limit lower flammable limit prediction models
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2016.09.005
文献标志码:
A
摘要:
为了预测多元混合气体可燃性极限,通过化学平衡计算软件分析确定了气体在可燃性下限(LFL)和可燃性上限(UFL)的燃烧产物及计算绝热火焰温度(CAFT),基于能量平衡方程和简化反应模型,分别建立了混合气体LFL和UFL预测模型。应用该预测模型对CH4、C2H4、C3H8、C3H6和CO组成的不同比例混合气体可燃性极限进行预测。结果表明:简化反应模型对于LFL和UFL预测值与文献中实验值的平均相对误差分别为2.76%和5.45%,相关系数分别为0.995和0.950;同时发现两步简化模型对含有C2H4和CO混合组分预测结果误差较大,但对于平均碳原子数大于2的混合气体,预测结果一致性较好。
Abstract:
In order to predict the flammable limit of multi-component gas mixture, the combustion products and the calculated adiabatic flame temperature (CAFT) of gas mixture at the lower flammable limit (LFL) and upper flammable limit (UFL) were obtained by using a chemical equilibrium calculation software. The prediction models on LFL and UFL of gas mixture were established respectively based on the energy balance equation and simplified reaction model. The flammable limit of gas mixture composed by CH4、C2H4、C3H8、C3H6 and CO with different proportions were predicted by using the prediction models. The results showed that the average relative errors were 2.76% and 5.45% respectively between the prediction values by the simplified reaction model and the experimental values in former literature of LFL and UFL, with the correlation coefficient of 0.995 and 0.950. Furthermore, the error of prediction results using two-step simplified model was larger for gas mixture composed by C2H4 and CO, but the consistency of prediction results was better for gas mixture with the average number of carbon atom larger than 2.

参考文献/References:

[1]杨凡, 陶刚, 张礼敬, 等. 障碍物对气体爆炸压力场影响数值模拟[J]. 中国安全生产科学技术, 2013 (2): 59-63.YANG Fan, TAO Gang, ZHANG Lijing, et al. Numerical simulation on influence of obstacle on the pressure field of combustible gas explosion[J]. Journal of Safety Science and Technology, 2013(2): 59-63.
[2]Mashuga C V, Crowl D A. Derivation of Le Chatelier’s mixing rule for flammable limits[J]. Process Safety Progress, 2000, 19(2): 112-117.
[3]Kondo S, Takizawa K, Takahashi A, et al. Extended Le Chatelier’s formula and nitrogen dilution effect on the flammability limits[J]. Fire Safety Journal, 2006, 41(5): 406-417.
[4]Vidal M, Wong W, Rogers W J, et al. Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures[J]. Journal of Hazardous Materials, 2006, 130(1): 21-27.
[5]Zhao F, Rogers W J, Mannan M S. Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits[J]. Journal of Hazardous Materials, 2010, 174(1): 416-423.
[6]李国梁, 蒋军成, 潘勇. 基于绝热火焰温度混合气体爆炸下限的预测[J]. 中国安全科学学报, 2011, 21(7): 57-61.LI Guoliang, JIANG Juncheng, PAN Yong. Prediction on lower explosive limit of mixed gases based on calculated adiabatic flame temperatures[J]. China Safety Science Journal, 2011, 21(7): 57-61.
[7]Liaw H J, Chen C C, Lin N K, et al. Flammability Limits Estimation for Fuel-Air-Diluent Mixtures Tested in a Constant Volume Vessel[J]. Process Safety and Environmental Protection, 2016.
[8]Hu X, Yu Q, Sun N, et al. Experimental study of flammability limits of oxy-methane mixture and calculation based on thermal theory[J]. International Journal of Hydrogen Energy, 2014, 39(17): 9527-9533.
[9]Ma T, Wang Q, Larraaga M D. Correlations for estimating flammability limits of pure fuels and fuel-inert mixtures[J]. Fire Safety Journal, 2013, 56: 9-19.
[10]Melhem G A. A detailed method for estimating mixture flammability limits using chemical equilibrium[J]. Process Safety Progress, 1997, 16(4): 203-218.
[11]Hansel J G, Mitchell J W, Klotz H C. Predicting and controlling flammability of multiple fuel and multiple inert mixtures[J]. Plant/Operations Progress, 1992, 11(4): 213-217.
[12]Mashuga C V, Crowl D A. Flammability zone prediction using calculated adiabatic flame temperatures[J]. Process Safety Progress, 1999, 18(3): 127-134.
[13]Shebeko Y N, Fan W, Bolodian I A, et al. An analytical evaluation of flammability limits of gaseous mixtures of combustible-oxidizer-diluent[J]. Fire Safety Journal, 2002, 37(6): 549-568.
[14]Liaw H J, Chen C C, Chang C H, et al. Model to estimate the flammability limits of fuel-air-diluent mixtures tested in a constant pressure vessel[J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2747-2761.
[15]David, S, Dandy. Chemical Equilibrium Calculation[EB/OL]. http://navier.engr.colostate.edu/~dandy/code/code-4/index.html.
[16]Shu G, Long B, Tian H, et al. Flame temperature theory-based model for evaluation of the flammable zones of hydrocarbon-air-CO2 mixtures[J]. Journal of Hazardous Materials, 2015, 294: 137-144.
[17]Razus D, Molnarne M, Fu? O. Limiting oxygen concentration evaluation in flammable gaseous mixtures by means of calculated adiabatic flame temperatures[J]. Chemical Engineering and Processing: Process Intensification, 2004, 43(6): 775-784.
[18]Westbrook C K, Dryer F L. Chemical kinetic modeling of hydrocarbon combustion[J]. Progress in Energy and Combustion Science, 1984, 10(1): 1-57.

相似文献/References:

[1]任常兴,张琰,赵文胜,等.混合气体爆炸性现场测试实验研究[J].中国安全生产科学技术,2019,15(1):20.[doi:10.11731/j.issn.1673-193x.2019.01.003]
 REN Changxing,ZHANG Yan,ZHAO Wensheng,et al.Experimental study on field test for explosiveness of gas mixture[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(9):20.[doi:10.11731/j.issn.1673-193x.2019.01.003]
[2]孙维吉,马杨奇,姜涵文,等.煤吸附硫化氢混合气体的试验研究*[J].中国安全生产科学技术,2021,17(6):52.[doi:10.11731/j.issn.1673-193x.2021.06.009]
 SUN Weiji,MA Yangqi,JIANG Hanwen,et al.Experimental study on adsorption of hydrogen sulfide gas mixture by coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):52.[doi:10.11731/j.issn.1673-193x.2021.06.009]

备注/Memo

备注/Memo:
收稿日期:2016-07-13
作者简介:夏阳光,硕士研究生。
通讯作者:陶刚,副教授。
更新日期/Last Update: