|本期目录/Table of Contents|

[1]杨伟,王赫宇,张树光.不同裂隙对煤层热流耦合现象的影响[J].中国安全生产科学技术,2016,12(8):11-15.[doi:10.11731/j.issn.1673-193x.2016.08.002]
 YANG Wei,WANG Heyu,ZHANG Shuguang.Effect of different cracks on thermal flow coupling in coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(8):11-15.[doi:10.11731/j.issn.1673-193x.2016.08.002]
点击复制

不同裂隙对煤层热流耦合现象的影响
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年8期
页码:
11-15
栏目:
学术论著
出版日期:
2016-08-30

文章信息/Info

Title:
Effect of different cracks on thermal flow coupling in coal seam
文章编号:
1673-193X(2016)-08-0011-05
作者:
杨伟1王赫宇1张树光2
(1. 辽宁工程技术大学 建筑工程学院,辽宁 阜新 123000;2. 辽宁工程技术大学 土木与交通学院,辽宁 阜新 123000)
Author(s):
YANG Wei1 WANG Heyu1 ZHANG Shuguang2
(1.School of Architecture and Engineering, Liaoning Technical University, Fuxin Liaoning 123000, China;2.School of Civil Engineering and Transportation, Liaoning Technical University, Fuxin Liaoning 123000, China)
关键词:
裂隙煤层多孔介质自然对流传热
Keywords:
cracks coal seam porous media natural convection heat transfer
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.08.002
文献标志码:
A
摘要:
煤炭在构造应力的作用下会产生不同形状的裂隙,不同的裂隙会对煤层内的流动与传热产生影响。以阜新市高德煤矿为例,建立二维物理模型,采用两区域方法构造控制方程组,运用计算机软件对四种裂隙下煤层的流场和温度场进行数值计算。计算结果表明:不同裂隙对煤层流场的影响主要在空气流动侧,对煤层区域影响很小;不同裂隙对煤层温度场的影响主要在裂隙界面上,对外界空气和煤层内部的影响均很小;不同裂隙条件下煤层壁面平均努谢尔特数曲线的契合度随着瑞利数的增加而不断降低,相比标准界面,其他三种界面的煤层壁面平均努谢尔特数值基本一致。研究结果可为煤矿的安全开采提供理论性指导。
Abstract:
Under the effect of tectonic stress, the cracks with different shapes will appear in coal, and different cracks will affect the flow and heat transfer in the coal seam. Taking Gaode coal mine in Fuxin city as example, a two-dimensional physical model was established, and the two area method was used to construct the governing equations group. The flow field and temperature field of coal seam under four kinds of cracks were calculated by the computer software. The results showed that the effect of different cracks on the flow field in coal seam is mainly in air flow area, with very little effect on coal seam area. The influence of different cracks on the temperature field in coal seam is mainly on the crack interface, with little influence on external air and inside of coal seam. The coordination degree of the average Nusselt number curve of coal seam wall under different cracks conditions decreases with the increase of the Rayleigh number, and compared to the standard interface, the average Nusselt number of coal seam wall for other three kinds of interface are basically the same. The research results can provide theoretical guidance for safe mining of coal mine.

参考文献/References:

[1]吴强,陈文胜.煤自燃的热重分析研究[J].中国安全生产科学技术,2008, 4(1):71-73.WU Qiang, CHEN Wensheng. The thermogravity analysis study on the spontaneous combustion of coal[J]. Journal of Safety Science and Technology,2008, 4(1):71-73.
[2]王世东,虎维岳.深部矿井煤岩体温度场特征及其控制因素研究[J].煤炭科学技术,2013, 41(8):18-20.WANG Shidong, HU Weiyue. Research on coal characteristics and rock mass temperature fields and control factors in deep mine[J]. Coal Science and Technology,2013, 41(8):18-20.
[3]G. S. Beavers, D. D. Joseph. Boundary Conditions at a Naturally Permeable Wall[J]. J. Fluid Mech,1967,30(1): 197-207.
[4]D. Gobin, B. Goyeau, J. P. Songbe. Double Diffusive Natural Convection in a Composite Fluid-Porous Layer[J].Journal of Heat Transfer, 1998, 120: 234-242.
[5]T. Nishimura, T. Takumi, M. Shiraishi, Y. Kawamura, H. Ozoe. Numerical Analysis of Natural Convection in a Rectangular Enclosure Horizontally Divided into Fluid and Porous Regions[J]. Int. J. Heat Mass Transfer., 1986,29(6): 889-898.
[6]S. B. Sathe, W. Q. Lin, T. W. Tong. Natural Convection in Enclosures Containing an Insulation with a Permeable Fluid-porous Interface[J]. Int. J. Heat Fluid Flow, 1988, 9(4): 389-395.
[7]匡东升. 部分填充多化介质复合腔体内交界面滑移效应研究[D].济南:山东建筑大学,2015.
[8]姬翔. 多孔介质与流体复合腔体内自然对流传热的多尺度研究[D].济南:山东建筑大学,2013.
[9]戴振宇. 部分填充多孔介质通道内流体流动及传热特性研究[D].济南:山东建筑大学,2015.
[10]Noorishad J, Ayatollahi M S, Witherspoon P A. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses[C]//lntemational Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts. Pergamon, 1982, 19(4): 185-193.
[11]Schulz,R, Analytical model calculations for heat exchange in a confined aquifer[J]. Journal of Geophysics, 1987,61:12-20.
[12]吉小明.饱和多孔岩体中温度场渗流场应力场耦合分析[J].广东工业大学学报,2006(9):46-53.JI Xiaoming. Analysis of fully coupled therma1-hydraulie-mechanical behavior of saturated porous rock mass[J].Journal of Guangdong University of Technology,2006(9):46-53.
[13]黄涛,杨立中.隧道裂隙岩体温度一渗流耦合数学模型研究[J].岩土工程学报,1999(5):554-558.HUANG Tao, YANG Lizhong. A study of mathematical model on coupling between temperature-seepage in fractured rock mass surrounding tunnel[J].Chinese Journal of Geotechnical Engineering,1999(5):554-558.
[14]S. Ergun. Fluid Flow Through Packed Columns[J]. Chemical Engineering Progress. 1952, 48: 89-94.
[15]杨伟,杨秋实,杜宝,等.裂隙岩体渗流耦合传热分析 [J]. 中国地质灾害与防治学报, 2012, 27(1): 59-64.YANG Wei, YANG Qiushi, Du Bao, et al. Analysis of coupled heat transfer for fractured rock seepage [J].Chinese Journal of Geological Hazard and Control, 2012, 27(1): 59-64.
[16]迟广舟. 多孔介质复合腔体内自然对流传热传质的研究[D].济南:山东建筑大学,2011.

相似文献/References:

[1]王法凯,蒋承林,吴爱军,等.特别破碎测压围岩环境改造工艺技术研究[J].中国安全生产科学技术,2010,6(3):23.
 WANG Fa-kai,JIANG Cheng-lin,WU Ai-jun,et al.Sutdy on particular broken rock manometry of environmental reform process technology[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(8):23.
[2]张鹏翔 ,李绍泉 .贵州井下煤层爆破地震波特征及其影响[J].中国安全生产科学技术,2013,9(8):49.[doi:10.11731/j.issn.1673-193x.2013.08.009]
 ZHANG Peng xiang,LI Shao quan.Characteristics and impact of blasted seismic wave in Guizhou underground coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):49.[doi:10.11731/j.issn.1673-193x.2013.08.009]
[3]李英明,贾安立,马念杰.煤巷顶板岩层赋存特征及块体梁顶板稳定性分析[J].中国安全生产科学技术,2014,10(6):51.[doi:10.11731/j.issn.1673-193x.2014.06.008]
 LI Ying ming,JIA An li,MA Nian jie.Analysis on occurrence characteristics of roof strata in coal roadway and stability of blocks rock beam roof[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):51.[doi:10.11731/j.issn.1673-193x.2014.06.008]
[4]郑新军,岳高伟,霍留鹏,等.煤层封存CO2性能的晶格理论模型及应用[J].中国安全生产科学技术,2017,13(10):30.[doi:10.11731/j.issn.1673-193x.2017.10.005]
 ZHENG Xinjun,YUE Gaowei,HUO Liupeng,et al.Lattice theory model and its application on CO2 storing performance of coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(8):30.[doi:10.11731/j.issn.1673-193x.2017.10.005]
[5]郭军杰,程晓阳.循环载荷下煤裂隙演化试验研究[J].中国安全生产科学技术,2018,14(2):39.[doi:10.11731/j.issn.1673-193x.2018.02.006]
 GUO Junjie,CHENG Xiaoyang.Experimental study on crack evolution of coal under cyclic loading[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):39.[doi:10.11731/j.issn.1673-193x.2018.02.006]
[6]张嬿妮,张帆,邓军,等.不同煤层煤氧化自燃性实验分析[J].中国安全生产科学技术,2018,14(10):39.[doi:10.11731/j.issn.1673-193x.2018.10.006]
 ZHANG Yanni,ZHANG Fan,DENG Jun,et al.Experimental analysis on characteristics of oxidation and spontaneous combustion of coal in different coal seams[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):39.[doi:10.11731/j.issn.1673-193x.2018.10.006]
[7]卢红奇,聂百胜,陈秀娟,等.基于液电效应的高压电脉冲对煤体致裂实验研究*[J].中国安全生产科学技术,2020,16(10):83.[doi:10.11731/j.issn.1673-193x.2020.10.013]
 LU Hongqi,NIE Baisheng,CHEN Xiujuan,et al.Experimental research on coal crushing by using highvoltage electrical pulse based on electrohydraulic effect[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(8):83.[doi:10.11731/j.issn.1673-193x.2020.10.013]

备注/Memo

备注/Memo:
国家自然科学基金项目(51574141)
更新日期/Last Update: 2016-08-30