|本期目录/Table of Contents|

[1]韩力,刘鑫鹏,马金晶,等.基于CFD的半封闭空间内LNG泄漏后果研究[J].中国安全生产科学技术,2016,12(6):110-115.[doi:10.11731/j.issn.1673-193x.2016.06.020]
 HAN Li,LIU Xinpeng,MA Jinjing,et al.Study on consequence of LNG leakage in semi-confined space based on CFD[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):110-115.[doi:10.11731/j.issn.1673-193x.2016.06.020]
点击复制

基于CFD的半封闭空间内LNG泄漏后果研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年6期
页码:
110-115
栏目:
现代职业安全卫生管理与技术
出版日期:
2016-06-30

文章信息/Info

Title:
Study on consequence of LNG leakage in semi-confined space based on CFD
作者:
韩力刘鑫鹏马金晶郭开华
(中山大学 工学院,广东 广州 510006)
Author(s):
HAN Li LIU Xinpeng MA Jinjing GUO Kaihua
(School of Engineering, Sun Yat-sen University, Guangzhou Guangdong 510006, China)
关键词:
CFD 半封闭空间 LNG 通风 爆炸
Keywords:
CFD semi-confined space LNG ventilation explosion
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2016.06.020
文献标志码:
A
摘要:
为定量分析半封闭空间内液化天然气(LNG)泄漏后果,利用计算流体力学(CFD)软件FLUENT,对不同条件下的“冷箱”内LNG泄漏后扩散与爆炸过程进行了模拟。结果表明:无论通风与否,危险区域(甲烷体积分数为5%~15%)一直存在,但通风时该区域比无通风时小; LNG泄漏后会导致箱内温度降低,且泄漏量越大温度下降越低,但通风在一定程度上能减小温降; 当危险区域最大时,发生爆炸产生的超压最大,对于泄漏量小的情况,通风能减小爆炸压力; 障碍物的存在会增大爆炸压力,研究中的最大爆炸超压为158 kPa,可对设备与人员造成严重危害,故在设计“冷箱”时须提出相应的强度要求。研究方法与结果对于与“冷箱”类似的受限空间安全设计与风险评估有指导意义。
Abstract:
To quantitatively analyze the consequence of LNG leakage in semi-confined space, the diffusion and explosion after the leakage of LNG in a "cold box" under different conditions were simulated by using the CFD software FLUENT. The results showed that the dangerous area with methane content of 5%-15% by volume fraction always exists whether there is ventilation or not, but this area with ventilation is smaller than that without ventilation. The leakage of LNG will cause the temperature in the box decrease, the larger the leakage amount, the lower the temperature decrease, but the ventilation can reduce the temperature decrease to a certain extent. The biggest dangerous area produces the maximum explosion overpressure, and the ventilation can reduce the explosion pressure when the leakage amount is small. The existence of obstacles will increase the explosion pressure, the maximum explosion overpressure in this study was 158 kPa, which can cause serious hazard to equipments and personnel, so the corresponding requirement of strength should be put forward when designing "cold box". It has guiding significance for safety design and risk assessment of confined space similar to "cold box".

参考文献/References:

[1]顾安忠. 液化天然气技术手册[M]. 北京:机械工业出版社, 2001:520-531.
[2]Dag Bjerketvedt, Jan Roar Bakke, Kees van Wingerden. Gas explosion handbook[J]. Journal of Hazardous Materials, 1997, 52:1-150.
[3]D. Makarov, F. Verbecke, V. Molkov, et al. An intercomparison of CFD models to predict lean and non-uniform hydrogen mixture explosions[J].International Journal of Hydrogen Energy, 2010, 35:5754-5762.
[4]Ales Tulach, Miroslav Mynarz, Milada Kozubková. CFD simulation of vented explosion and turbulent flame propagation[C]. EPJ Web of Conferences, 2015.
[5]E.G. Merilo, M.A. Groethe, J.D. Colton. Experimental study of hydrogen release accidents in a vehicle garage[J]. International Journal of Hydrogen Energy, 2011, 36:2436:2444.
[6]William M. Pitts, Jiann C. Yang, Matthew Blais. Dispersion and burning behavior of hydrogen released in a full-scale residential garage in the presence and absence of conventional automobiles[J]. International Journal of Hydrogen Energy, 2012, 37:17457-17469.
[7]C. Regis Bauwens, Jeff Chaffee, Sergey Dorofeev. Experimental and numerical study of methane-air deflagrations in a vented enclosure[C]. Fire Safety Science-proceedings of the Ninth International Symposium, pp.1043-1054, Boston, USA, 2008.
[8]Qi Bao, Qin Fang, Yadong Zhang, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures[J]. Fuel, 2016, 175:40-48.
[9]吴运逸, 雷海丽. 加气站压缩机间气体爆炸数值模拟研究[J].中国安全生产科学技术, 2013,9(11):59-64. WU Yunyi, LEI Haili. Numerical simulation on gas explosion in compression compartment of gas filling station[J]. Journal of Safety Science and Technology, 2013, 9(11):59-64.
[10]郭丹彤, 吕淑然, 杨凯. 障碍物布置对气体爆炸压力场的影响效果研究[J]. 中国安全生产科学技术, 2015, 11(9):88-93. GUO Dantong, LYU Shuran, YANG Kai. Research on impact effect of obstacle arrangement to pressure filed of gas explosion[J]. Journal of Safety Science and Technology, 2015,11(9):88-93.
[11]董冰岩, 彭旭. 泄爆面积对柱形容器泄爆过程压力的影响[J]. 工业安全与环保, 2012, 38(12):47-51. DONG Bingyan, PENG Xu. Influences of vent area on pressure development of cylindrical vessels explosion vent[J]. Industrial Safety and Environmental Protection, 2012, 38(12):47-51.
[12]Qiuju Ma, Qi Zhang, Lei Pang. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014,27:65-73.
[13]D. K. Pritchard, D. J. Freeman, P. W. Guilbert. Prediction of explosion pressures in confined spaces[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3):205-215.
[14]ANSYS. ANSYS Fluent User’s Guide [M]. Canonsburg, Pennsylvania: ANSYS, Inc. , 2015.
[15]傅智敏, 黄金印, 臧娜. 爆炸冲击波伤害破坏作用定量分析[J]. 消防科学与技术, 2009, 28(6):390-395. FU Zhimin, HUANG Jinyin, ZANG Na. Quantitative analysis for consequence of explosion shock wave[J]. Fire Science and Technology, 2009, 28(6):390-395.

相似文献/References:

[1]王艳,邱榕,安江涛,等.干挂石材幕墙火蔓延数值模拟研究[J].中国安全生产科学技术,2011,7(4):29.
 WANG Yan,QIU Rong,AN Jiang-tao,et al.Numerical simulation study of stone curtain wall fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(6):29.
[2]姜虹,李丽霞,沙锡东.甲苯池火辐射数值模拟[J].中国安全生产科学技术,2011,7(4):34.
 JIANG Hong,LI Li-xia,SHA Xi-dong.Numerical simulation of heat radiation by toluene pool fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(6):34.
[3]吴玉剑,潘旭海.障碍物地形条件下重气泄漏扩散实验的CFD模拟验证[J].中国安全生产科学技术,2010,6(3):13.
 WU Yu-jian,PAN Xu-hai.Simulation and verification of CFD on dispersion of heavy gas leakage in obstacle terrain[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(6):13.
[4]纵恒,卓丽颖,邱榕.数值模拟技术在某爆燃事故致因分析中的应用[J].中国安全生产科学技术,2013,9(1):70.
 ZONG Heng,ZHUO Li ying,QIU Rong.Application of numerical simulation technology in cause analysis of a deflagration accident[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):70.
[5]智会强,路世昌,郭伟,等.基于CFD仿真分析的大型运动会主火炬塔安全评估[J].中国安全生产科学技术,2012,8(11):124.
 ZHI Hui qiang,LU Shi chang,GUO Wei,et al.Safety assessment on torch tower of large games based on CFD simulation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(6):124.
[6]毕昆,杨光华,唐卷科.基于CFD的核电厂防火安全评估方法研究[J].中国安全生产科学技术,2014,10(7):164.[doi:10.11731/j.issn.1673-193x.2014.07.029]
 BI Kun,YANG Guang-hua,TANG Juan-ke.Research on fire protection safety evaluation for nuclear power plants based on CFD[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):164.[doi:10.11731/j.issn.1673-193x.2014.07.029]
[7]高科,刘剑,邓立军,等.集于AutoCAD的采空区风火瓦斯耦合软件开发研究[J].中国安全生产科学技术,2015,11(5):97.[doi:10.11731/j.issn.1673-193x.2015.05.015]
 GAO Ke,LIU Jian,DENG Li-jun,et al.Development of air-fire-gas coupling software for goaf based on AutoCAD[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(6):97.[doi:10.11731/j.issn.1673-193x.2015.05.015]
[8]何明山,罗卫东,张立,等.点火提前角对焦炉气天然气混燃发动机燃烧特性的影响分析[J].中国安全生产科学技术,2016,12(9):81.[doi:10.11731/j.issn.1673-193x.2016.09.015]
 HE Mingshan,LUO Weidong,ZHANG Li,et al.Influence of ignition advance angle on combustion characteristics of engine fuelled with coke oven gas and natural gas blends[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):81.[doi:10.11731/j.issn.1673-193x.2016.09.015]
[9]李新宏,朱红卫,陈国明,等.公路隧道内CNG管束气瓶车泄漏天然气扩散CFD仿真[J].中国安全生产科学技术,2016,12(12):138.[doi:10.11731/j.issn.1673-193x.2016.12.024]
 LI Xinhong,ZHU Hongwei,CHEN Guoming,et al.CFD simulation of natural gas diffusion from CNG tube-buddle cylinder vehicle leakage in highway tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):138.[doi:10.11731/j.issn.1673-193x.2016.12.024]
[10]董澈,陈国明,李新宏,等.天然气净化厂管道泄漏H2S毒害后果影响因素数值分析[J].中国安全生产科学技术,2018,14(12):78.[doi:10.11731/j.issn.1673-193x.2018.12.012]
 DONG Che,CHEN Guoming,LI Xinhong,et al.Numerical analysis on influencing factors of H2S toxicity consequence induced by pipeline leakage in natural gas purification plant[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(6):78.[doi:10.11731/j.issn.1673-193x.2018.12.012]

备注/Memo

备注/Memo:
广东省教育厅液化天然气与低温技术重点实验室资助项目(39000-3211101); 中山大学-BP中心液化天然气中心资助项目(99103-9390001)
更新日期/Last Update: 2016-06-30