|本期目录/Table of Contents|

[1]马衍坤,刘泽功,周健.压裂钻孔孔壁破坏行为与注水流量相关性试验研究[J].中国安全生产科学技术,2016,12(6):82-87.[doi:10.11731/j.issn.1673-193x.2016.06.015]
 MA Yankun,LIU Zegong,ZHOU Jian.Experimental study on correlation between water injection flow rate and hole wall failure behavior of hydraulic fracture borehole[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):82-87.[doi:10.11731/j.issn.1673-193x.2016.06.015]
点击复制

压裂钻孔孔壁破坏行为与注水流量相关性试验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年6期
页码:
82-87
栏目:
现代职业安全卫生管理与技术
出版日期:
2016-06-30

文章信息/Info

Title:
Experimental study on correlation between water injection flow rate and hole wall failure behavior of hydraulic fracture borehole
作者:
马衍坤12刘泽功1周健1
(1. 安徽理工大学 煤矿安全高效开采省部共建教育部重点实验室, 安徽 淮南 232001; 2. 河南省瓦斯地质与瓦斯治理重点实验室, 河南 焦作 454000)
Author(s):
MA Yankun12 LIU Zegong1 ZHOU Jian1
(1. Key Laboratory of Safety and High-efficiency Coal Mining of Anhui University of Science and Technology, Huainan Anhui 232001, China; 2. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo Henan 454000, China)
关键词:
水力压裂注水流量孔壁应变破裂形态能量积聚
Keywords:
hydraulic fracturing water injection flow rate hole wall strain fracture morphology energy accumulation
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.06.015
文献标志码:
A
摘要:
为分析流量对水力压裂钻孔起裂特征的影响,开展了不同注水流量水力压裂实验,得到了煤体起裂过程的孔壁压缩应变-水压曲线。结果表明,流量的增大使破裂形态趋于复杂,表现在裂缝的数目及宽度会变多增大,而原煤则更易于沟通原生裂隙;对于无明显节理的配比型煤,随着注水流量增大,孔壁应变速率和起裂压力均增高;对于含明显节理的原煤,孔壁应变速率及起裂压力变化具有一致性,但与流量变化不一致,原煤内部的节理会影响试块起裂行为,降低钻孔内能量积聚速率和煤体破裂强度。研究成果对于揭示钻孔起裂行为具有重要理论意义,为水力压裂实验研究提供了一种新思路。
Abstract:
In order to analyze the influence of flow rate on fracturing initiation characteristics of hydraulic fracture borehole, the hydraulic fracturing experiments under different water injection flow rates were carried out, and the curves of hole wall compressive strain against water pressure in the fracturing initiation process of coal were obtained. The results showed that the fracture morphology of coal samples tended to be complicated with the increase of flow rate, with the representation of larger number and width of cracks, and the initial fissures became easily to link up for raw coal samples. For proportioning briquette without obvious joints, the hole wall strain rate and the fracturing initiation pressure increased with the increase of water injection flow rate. For raw coal with obvious joints, the hole wall strain rate and the fracturing initiation pressure variation had the consistence, while did not show consistence with flow rate variation. The internal joints of raw coal would influence the fracturing initiation behavior of coal samples in aspects of decreasing the energy accumulation velocity in borehole and the fracture strength of coal samples. It has important theoretical significance to reveal the fracturing initiation behavior of borehole, and provides a new idea for experimental research on hydraulic fracturing.

参考文献/References:

[1]陈珂, 贾松磊, 卢全督,等. 低透突出煤层深孔水力致裂增透与浅孔抽采联合消突技术应用[J]. 中国安全生产科学技术, 2013, 9(5):39-44. CHEN Ke, JIA Songlei, LU Quandu, et al. Application of hydraulic fracturing and shallow boreholes drainage in low permeability outburst coal seam[J]. Journal of Safety and Technology, 2013, 9(5):39-44.
[2]程远方,徐太双,吴百烈,等. 煤岩水力压裂裂缝形态试验研究[J].天然气地球科学, 2013, 24(1): 134-137. CHENG Yuanfang, XU Fangtai, WU Bailie, et al. Experimental study on the hydraulic fractures’ morphology of coal bed[J]. Journal of natural gas geoscience, 2013, 24(1): 134-137.
[3]Stanchits, S., Mayr, S., Shapiro, S., Dresen, G. Fracturing of porous rock induced by fluid injection. Tectonophysics, 2011, 503(1): 129-145.
[4]Zhang, G. Q., Fan, T. A high-stress tri-axial cell with pore pressure for measuring rock properties and simulating hydraulic fracturing. Measurement, 2014, 49: 236-245.
[5]杨勇,杨永明,马收,等. 低渗透岩石水力压力裂纹扩展的CT扫描[J]. 采矿与安全工程学报,2013, 30(5): 739-743. YANG Yong, YANG Yongming, MA Shou, et al. Crack propagation induced by hydraulic fracturing in low permeability rocks using CT technology[J].Journal of Mining & Safety Engineering, 2013, 30(5): 739-743.
[6]赵金洲, 任岚, 胡永全,等. 裂缝性地层水力裂缝张性起裂压力分析[J]. 岩石力学与工程学报, 2013, 32(s1):2855-2862. ZHAO Jinzhou, REN Lan, HU Yongquan, et al. Hydraulic fracture tensile initiation pressure analysis for fractured formation [J]. Journal of Rock Mechanics & Engineering, 2013, 32(s1):2855-2862.
[7]Ghassemi A., Zhou X.X., Rawal C. (2013). A three-dimensional poroelastic analysis of rock failure around a hydraulic fracture, Journal of Petroleum Science and Engineering, 108, 118-127.
[8]翟成, 李贤忠, 李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报, 2011, 36(12): 1996-2001. ZHAI Cheng, LI Xianzhong, LI Quangui. Research and application of coal seam pulse hydraulic fracturing technology[J]. Journal of China Coal Society, 2011, 36(12): 1996-2001.
[9]Evans, K. F., Zappone, A., Kraft, T., Deichmann, N., Moia, F. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics, 2012, 41: 30-54.
[10]马衍坤,刘泽功,周健,等. 基于孔壁应变发展规律的压裂孔三阶段起裂特征试验研究[J]. 岩土力学,2015, 36(8):2151-2159. MA Yankun, LIU Zegong, ZHOU Jian, et al. Tri-stage fracturing of borehole based on strain of hole-wall in hydraulic fracturing process[J]. Rock and Soil Mechanics, 2015, 36(8):2151-2159.
[11]纪文栋, 杨春和, 姚院峰, 等. 应变加载速率对盐岩力学性能的影响[J]. 岩石力学与工程学报, 2011, 30(12): 2507-2513. JI Wendong, YANG Chunhe, YAO Yuanfeng, et al. Effects of loading strain rate on mechanical performances of slat work[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2507-2513.

相似文献/References:

[1]刘世通.辛置煤矿水力压裂卸压增透影响半径数值模拟研究[J].中国安全生产科学技术,2013,9(2):44.
 LIU Shi tong.Numerical simulation of pressure relief and antireflection radius influenced by  hydraulic fracturing in Xinzhi coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):44.
[2]闫金鹏,刘泽功 ,姜秀雷,等.高瓦斯低透气性煤层水力压裂数值模拟研究[J].中国安全生产科学技术,2013,9(8):27.[doi:10.11731/j.issn.1673-193x.2013.08.005]
 YAN Jin peng,LIU Ze gong,JIANG Xiu lei,et al.Numerical simulation on hydraulic fracturing procedure of coal seam with high gas and low air permeability[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):27.[doi:10.11731/j.issn.1673-193x.2013.08.005]
[3]孙东生,刘健,蔡文鹏,等.高瓦斯低透气性煤层水力压裂技术的试验研究[J].中国安全生产科学技术,2013,9(9):49.[doi:10.11731/j.issn.1673-193x.2013.09.009]
 SUN Dong sheng,LIU Jian,CAI Wen peng,et al.Experimental study on hydraulic fracturing technology in high gas and low permeability coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):49.[doi:10.11731/j.issn.1673-193x.2013.09.009]
[4]郑华林,张益维,刘少胡.水力压裂冲蚀磨损对连续管剩余寿命影响研究[J].中国安全生产科学技术,2016,12(7):110.[doi:10.11731/j.issn.1673-193x.2016.07.020]
 ZHENG Hualin,ZHANG Yiwei,LIU Shaohu.Study on effect of erosion wear to residual life of coiled tubing for hydraulic fracturing[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):110.[doi:10.11731/j.issn.1673-193x.2016.07.020]
[5]刘少胡,张益维,管锋,等.含缺陷连续管冲蚀规律研究[J].中国安全生产科学技术,2016,12(10):92.[doi:10.11731/j.issn.1673-193x.2016.10.015]
 LIU Shaohu,ZHANG Yiwei,GUAN Feng,et al.Study on erosion laws of coiled tubing containing defect[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):92.[doi:10.11731/j.issn.1673-193x.2016.10.015]
[6]牟全斌.井下穿层长钻孔水力压裂强化增透技术[J].中国安全生产科学技术,2017,13(8):164.[doi:10.11731/j.issn.1673-193x.2017.08.026]
 MOU Quanbin.Strengthened permeability enhancement technology by hydraulic fracturing for underground layer-through long borehole[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):164.[doi:10.11731/j.issn.1673-193x.2017.08.026]
[7]李胜,等.钻孔间距对水力压裂促抽煤层瓦斯的影响[J].中国安全生产科学技术,2018,14(1):70.[doi:10.11731/j.issn.1673-193x.2018.01.011]
 LI Sheng,REN Yanping,et al.Influence of spacing between boreholes on hydraulic fracturing to enhance coal seam gas extraction[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(6):70.[doi:10.11731/j.issn.1673-193x.2018.01.011]
[8]刘进平,高云,李欣.地面水力压裂对井下煤层瓦斯抽采影响分析[J].中国安全生产科学技术,2018,14(10):133.[doi:10.11731/j.issn.1673-193x.2018.10.021]
 LIU Jinping,GAO Yun,LI Xin.Analysis on influence of ground hydraulic fracturing on gas extraction in underground coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(6):133.[doi:10.11731/j.issn.1673-193x.2018.10.021]

备注/Memo

备注/Memo:
国家自然科学基金项目(51404009,51404013);中国博士后科学基金资助项目(2013M541815);河南省瓦斯地质与瓦斯治理重点实验室——省部共建国家重点实验室培育基地开放基金项目(WS2013A02)
更新日期/Last Update: 2016-06-30