|本期目录/Table of Contents|

[1]辛亚军,安定超,李梦远.巷道围岩再造承载层机理及数值模拟[J].中国安全生产科学技术,2016,12(6):36-41.[doi:10.11731/j.issn.1673-193x.2016.06.007]
 XIN Yajun,AN Dingchao,LI Mengyuan.Mechanism and numerical simulation of renewable bearing stratum in roadway surrounding rock[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):36-41.[doi:10.11731/j.issn.1673-193x.2016.06.007]
点击复制

巷道围岩再造承载层机理及数值模拟
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年6期
页码:
36-41
栏目:
学术论著
出版日期:
2016-06-30

文章信息/Info

Title:
Mechanism and numerical simulation of renewable bearing stratum in roadway surrounding rock
作者:
辛亚军12安定超1李梦远1
(1.河南理工大学 能源科学与工程学院,河南 焦作 454000;2.煤炭安全生产河南省协同创新中心,河南 焦作 454000)
Author(s):
XIN Yajun12 AN Dingchao1 LI Mengyuan1
(1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China; 2. Collaborative Innovation Center of Coal Work Safety, Henan Province, Jiaozuo Henan 454000, China)
关键词:
矿山巷道基本支护再造承载层力学分析数值模拟稳定性
Keywords:
mining roadway basic support renewable bearing stratum mechanics analysis numerical simulation stability
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.06.007
文献标志码:
A
摘要:
在分析大变形巷道基本支护系统基础上,依据应力转移与强抗承载的围岩稳定思想,提出了巷道围岩再造承载层机理,建立了巷道围岩再造承载层稳定性力学模型,分析了巷道围岩再造承载层的稳定因素,最后进行了数值模拟。结果表明:巷道基本支护系统的承载能力与作用范围有限,基本支护系统作用下巷道浅部围岩呈“O”形整体收敛,弹塑性界面离层明显;而巷道两帮再造承载层与基本支护系统形成“Ω”形承载结构体,整体承载能力加强,顶板应力由底板深部转移改变为向两帮外伸移动,两帮围岩移动由巷道内收敛改变为向巷道底角外扩散,巷道围岩稳定性提高;巷道围岩再造承载层位置越高、长度越大,围岩越稳定;无支护巷道两帮垂直应力集中区明显,支护后巷道两帮垂直应力集中区得到弱化,浅部围岩形成“Ω”承载拱形体,两帮与顶板位移变化量较小,底鼓量为无支护巷道的84.65%,应进一步做好底鼓控制,围岩整体收敛变形较小,支护效果明显。
Abstract:
Based on the analysis of basic support system in large deformation roadway and the principle of surrounding rock stability in stress transfer and strong anti-bearing, the theory on renewable bearing stratum in roadway surrounding rock was presented. A steady mechanics model of renewable bearing stratum in roadway surrounding rock was established, and the stability factors of renewable bearing stratum were analyzed, then the numerical simulation was implemented. The results showed that the bearing capacity and action range of basic support system in roadway were limited. An O-type integral convergence appeared and the elastic-plastic interface separated obviously in shallow surrounding rock of roadway under the basic support system. A Ω-type bearing structure appeared in renewable bearing stratum and basic support system on both sides of roadway, the integral bearing capacity increased, the roof stress changed from deep floor transition into overhanging movement to both sides, and the movement of surrounding rock on both sides changed from convergence in roadway into spread to outside of roadway base angle, so the stability of roadway surrounding rock increased. The higher the position and the larger the length of renewable bearing stratum in roadway surrounding rock, the more stable the surrounding rock. The vertical stress concentration region on both sides was obvious in non-support roadway and was weakened after supporting. The Ω-type bearing arch body was formed in shallow surrounding rock of roadway, and the displacement variation on both sides and roof was smaller, while the floor heave was 84.65% of that in non-support roadway. The floor heave control should be implemented well, the integral convergence deformation of surrounding rock will be smaller, and the support effect will be obvious.

参考文献/References:

[1]曹平, 王飞, 邱冠豪, 等. 软岩大变形巷道支护技术及应用[J]. 中国安全生产科学技术, 2014, 10(8): 69-74. CAO Ping, WANG Fei, QIU Guanhao, et al. Support technology and its application for large deformation of soft rock roadway[J]. Journal of Safety Science and Technology, 2014, 10(8): 69-74.
[2]刘清涛, 李常玉. 深部矿井煤巷稳定性控制技术[J]. 煤炭科学技术, 2015, 43(8): 18-22. LIU Qingtao, LI Changyu. Stability control technology of coal drift in deep underground mine[J]. Coal Science and Technology, 2015, 43(8): 18-22.
[3]袁亮, 顾金才, 薛俊华, 等. 深部围岩分区破裂化模型试验研究[J]. 煤炭学报, 2014, 39(6): 987-993. YUAN Liang, GU Jincai, XUE Junhua, et al. Model test research on the zonal disintegration in deep rock[J]. Journal of China Coal Society, 2014, 39(6): 987-993.
[4]姚琦, 冯涛, 王卫军, 等. 极破碎围岩半煤岩巷变形破坏机理及支护控制研究[J]. 中国安全生产科学技术, 2015, 11(5): 32-39. YAO Qi, FENG Tao, WANG Weijun, et al. Study on deformation and failure mechanism and support control measure of half coal rock roadway under extremely fractured surrounding rock[J]. Journal of Safety Science and Technology, 2015, 11(5): 32-39.
[5]李学彬, 杨仁树, 高延法, 等. 杨庄矿软岩巷道锚杆与钢管混凝土支架联合支护技术研究[J]. 采矿与安全工程学报, 2015, 32(2): 285-290. LI Xuebin, YANG Renshu, GAO Yanfa, et al. Study on combined support technology of bolt-mesh-shotcrete and concrete filled steel tubular supports for soft rock roadway in Yangzhuang mine[J]. Journal of Mining & Safety Engineering, 2015, 32(2): 285-290.
[6]陆银龙, 王连国, 张蓓, 等. 软岩巷道锚注支护时机优化研究[J]. 岩土力学, 2014, 33(5): 1395-1401. LU Yinlong, WANG Lianguo, ZHANG Bei, et al. Optimization of bolt-grouting time for soft rock roadway[J]. Rock and Soil Mechanics, 2014, 33(5): 1395-1401.
[7]王小庆. 拱形支架在煤矿巷道中的应用研究[J].中国安全生产科学技术, 2011, 7(3):54-57. WANG Xiaoqing. Study on application of arch support in coal mine roadway[J]. Journal of Safety Science and Technology, 2011, 7(3): 54-57
[8]刘玉德, 张洪鹏, 王广青, 等. 沿空掘进软岩巷道桁架联合支护试验研究[J]. 中国安全生产科学技术, 2013, 9(1): 24-28. LIU Yude, ZHANG Hongpeng, WANG Guangqing, et al. Experimental study on girder combination supporting of soft-rock roadway drivage along goaf[J]. Journal of Safety Science and Technology, 2013, 9(1): 24-28.
[9]张农, 李桂臣, 阚甲广. 煤巷顶板软弱夹层层位对锚杆支护结构稳定性影响[J]. 岩土力学, 2011, 32(9): 2753-2758. ZHANG Nong, LI Guichen,KAN Jiaguang. Influence of soft interlayer location in coal roof on stability of roadway bolting structure[J]. Rock and Soil Mechanics, 2011, 32(9): 2753-2758.
[10]康红普. 煤矿预应力锚杆支护技术的发展与应用[J]. 煤矿开采, 2011, 16(3): 25-30. KANG Hongpu. Development and application of pre-stress anchored bolt supporting technology in coal mine[J]. Coal Mining Technology, 2011, 16(3): 25-30.
[11]单仁亮, 孔祥松, 蔚振廷, 等. 煤巷强帮支护理论与应用[J]. 岩石力学与工程学报, 2013, 32(7): 1304-1314. SHAN Renliang, KONG Xiangsong, WEI Zhenting, et al. Theory and application of strong support for coal roadway sidewall[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1304-1314.
[12]黄庆享, 刘玉卫. 巷道围岩支护的极限自稳平衡拱理论[J]. 采矿与安全工程学报, 2014, 31(3): 354-358. HUANG Qingxiang, LIU Yuwei. Ultimate self-stable arch theory in roadway support[J]. Journal of Mining & Safety Engineering, 2014, 31(3): 354-358.
[13]勾攀峰, 辛亚军, 申艳梅, 等. 一种大变形巷道围岩再造承载层控制技术[P]. 中国, ZL201310280508.7. 2015, 08-19.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51374091);河南省教育厅科学技术研究重点项目(14B440001);焦作市科技攻关计划项目(20151021103453)
更新日期/Last Update: 2016-06-30