|本期目录/Table of Contents|

[1]张淑坤,张向东,孙琦,等.基于重整化群理论的采空区煤柱群临界失稳概率研究[J].中国安全生产科学技术,2016,12(5):104-108.[doi:10.11731/j.issn.1673-193x.2016.05.018]
 ZHANG Shukun,ZHANG Xiangdong,SUN Qi,et al.Study on critical instability probability of coal pillar groupin goaf based on renormalization group theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(5):104-108.[doi:10.11731/j.issn.1673-193x.2016.05.018]
点击复制

基于重整化群理论的采空区煤柱群临界失稳概率研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年5期
页码:
104-108
栏目:
现代职业安全卫生管理与技术
出版日期:
2016-05-30

文章信息/Info

Title:
Study on critical instability probability of coal pillar group in goaf based on renormalization group theory
作者:
张淑坤张向东孙琦宋凯
辽宁工程技术大学 土木与交通学院,辽宁 阜新123000)
Author(s):
ZHANG Shukun ZHANG Xiangdong SUN Qi SONG Kai
(School of Civil Engineering & Transportation, Liaoning Technical University, Fuxin Liaoning 123000, China)
关键词:
煤柱群安全稳定性重整化群理论临界概率传递系数
Keywords:
coal pillar group safety stability renormalization group theory critical probability transfer coefficient
分类号:
X913.4
DOI:
10.11731/j.issn.1673-193x.2016.05.018
文献标志码:
A
摘要:
为对房柱式采空区煤柱群安全稳定性进行客观评价,以概率分析为手段结合重整化群理论,深入研究了煤柱个体与相邻煤柱之间的荷载传递规律及煤柱群-顶板系统临界稳定性。得出结论:重整化群理论可适用于采空区煤柱群稳定性分析,确定煤柱群临界概率范围为0.147≤p*≤0.333;煤柱失稳荷载传递过程中的损失程度可用荷载传递系数α衡量,临界破坏概率p*随着荷载传递系数α的增加而递减;针对不同工况,需通过试验或现场实测获得传递系数α,才能准确的确定煤柱临界概率p*。
Abstract:
To objectively evaluate the safety stability of coal pillar group in room and pillar goaf, taking probability analysis as means and combined with renormalization group theory, the load transfer law between individual coal pillar and adjacent coal pillars and the critical stability of coal pillar group and roof system were studied deeply. The results showed that the renormalization group theory is applicable to the stability analysis of coal pillar group in goaf, and the range of critical probability for coal pillar group is 0.147≤p*≤0.333. The degree of damage in the process of coal pillar instability load transfer can be measured by load transfer coefficient α.With the increase of load transfer coefficient α, the critical failure probability p* decreases; Aiming at different conditions , it is necessary to obtain the transfer coefficient α by experiment or field test, then the critical probability of coal pillar p* can be determined accurately.

参考文献/References:

[1]张淑坤,杨逾,李永靖,等.老采空区对地表公路安全稳定性影响研究[J].中国安全科学学报,2014,24(12):57-62. ZHANG Shukun,YANG Yu, LI Yongjing, et al. Impact of old goaf on safety and stability of surface highway[J]. China Safety Science Journal, 2014,24(12):57-62.
[2]邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在问题[J]. 采矿与安全工程学报,2006,23(2):141-150. ZOU Youfeng, CHAI Huabin. Research status of strip coal pillar stability and its main problems in China[J].Journal of Mining & Safety Engineering, ,2006,23(2):141-150.
[3]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348. QIAN Minggao, XU Jialin,LIAO Miaoxing. Green technique in coal mining[J]. Journal of China University of Mining & Technology, 2003,32(4):343-348.
[4]Martin C D, Maybee W G. The strength of hard-rock pillar[J].International journal of Rock Mechanics & Mining Sciences,2000(37):1239-1246.
[5]孙琦,张淑坤,卫星,等.考虑煤柱黏弹塑性流变的煤柱群-顶板力学模型[J]. 安全与环境学报,2015,15(2):88-91. SUN Qi, ZHANG Shukun, WEI Xing, et al. Mechanic model for the gob pillar-roof in view of forecasting its visco-elasto-plastic rheological deformation[J]. Journal of Safety and Environment, 2015,15(2):88-91.
[6]林卫星,周爱民,宋嘉栋,等. 特大空区矿柱群分区协同开采技术研究与应用[J].采矿技术,2015,15(2): 9-11,47. LIN Weixing, ZHOU Aimin, SONG Jiadong, et al. King Gob pillar mining technology cluster partition Collaborative Research and Application [J].Mining Technology, 2015,15(2):9-11,47.
[7]解兴智. 浅埋煤层房柱式采空区顶板-煤柱稳定性研究[J].煤炭科学技术,2014,42(7):1-4,9. XIE Xingzhi.Study on stability of roof-coal pillar in room and pillar mining goaf in shallow depth seam[J]. Coal Science and Technology,2014,42(7):1-4,9.
[8]赵华安, 赵光明, 孟祥瑞. 断层影响下合理煤柱尺寸留设数值模拟分析[J]. 中国安全生产科学技术, 2014,10(11):27-33. ZHAO Huaan,ZHAO Guangming,MENG Xiangrui. Numerical simulation on rational size setting of coal pillar under influence of fault[J]. Journal of Safety Science and Technology, 2014,10(11):27-33.
[9]罗辉, 杨仕教, 陶干强,等.基于FEM-ANN-MCS动态模糊可靠度的煤柱稳定性分析[J].煤炭学报,2010,35(4):551-554 . LUO Hui, YANG SHIJiao, TAO Ganqiang.Stability analysis of ore pillar and application using concept of dynamic fuzzy reliability based on finite element method-artificial neural network-monte carlo simulation[J]. Journal of China Coal Society, 2010,35(4):551-554 .
[10]高召宁, 姚令侃, 徐光兴. 岩石破坏过程的自组织特征与临界条件研究[J]. 四川大学学报(工程科学版), 2009 ,41(2):91-95. GAO Zhaoning, YAO Lingkan, XU Guangxing. Study on self-organ ized characteristics and criticality condition in the course of rock failure[J]. Journal of Sichuan University (Engineering Science Edition), 2009 ,41(2):91-95.
[11]郭生茂,刘涛,程刚,等.基于 RG 法的空区群矿柱临界破坏条件研究[J].金属矿山,2014(8):125-128. GUO Shengmao,LIU Tao, CHENG Gang, et al. Pillar critical failure condition of mined-out zone groups based on RG method[J].Metal Mine ,2014(8):125-128.
[12]Olami Z., Feder H. J. S., Christensen K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes[J]. Physical Review Letters, 1992, 68(8): 1244-1247.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51504125)
更新日期/Last Update: 2016-06-17