|本期目录/Table of Contents|

[1]徐望明,郑超兵.燃气加热炉火焰视频监控系统设计[J].中国安全生产科学技术,2016,12(3):66-70.[doi:10.11731/j.issn.1673-193x.2016.03.012]
 XU Wangming,ZHENG Chaobing.Design of video surveillance system for flame in gas-fired heating furnace[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):66-70.[doi:10.11731/j.issn.1673-193x.2016.03.012]
点击复制

燃气加热炉火焰视频监控系统设计
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年3期
页码:
66-70
栏目:
现代职业安全卫生管理与技术
出版日期:
2016-03-30

文章信息/Info

Title:
Design of video surveillance system for flame in gas-fired heating furnace
文章编号:
1673-193X(2016)-03-0066-05
作者:
徐望明12郑超兵1
(1.武汉科技大学 信息科学与工程学院,湖北 武汉 430081;2.武汉科技大学 教育部冶金自动化与检测技术工程研究中心,湖北 武汉 430081)
Author(s):
XU Wangming12 ZHENG Chaobing1
(1.College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan Hubei 430081, China; 2.Engineering Research Center for Metallurgical Automation and Detecting Technology in Ministry of Education, Wuhan University of Science and Technology, Wuhan Hubei 430081,China)
关键词:
火焰视频监控图像预处理 火焰特征提取 特征分析
Keywords:
video surveillance of flame image preprocessing flame feature extraction feature analysis
分类号:
X933.2
DOI:
10.11731/j.issn.1673-193x.2016.03.012
文献标志码:
A
摘要:
为了持续监测燃气工业加热炉燃烧状况,保障锅炉运行安全,根据燃气火焰的特点,利用数字图像处理技术,设计了相应的燃气加热炉火焰视频监控系统。通过图像预处理、火焰特征提取、火焰特征分析三个步骤,可实现对炉膛火焰燃烧状态进行实时判定,包括火焰燃烧或熄灭、燃烧是否充分、是否稳定。仿真实验结果表明,该系统能准确地从监控视频中检测和识别火焰燃烧状态,并能将燃烧特征量和特征分析结果存储到数据库以供事后查询。
Abstract:
In order to continuously monitor the combustion conditions in the gas-fired industrial heating furnace and guarantee the safe operation of the furnace, a video surveillance system for flame in gas-fired heating furnace based on the technology of digital image processing was designed according to the characteristics of gas-fired flame. Through three steps including image preprocessing, flame feature extraction and flame feature analysis, the real-time judgment on combustion conditions of flame in furnace can be realized, such as the flame is combusting or extinguished, whether the combustion is full or not, and whether the combustion is stable or not. The simulation experimental results showed that the system can detect and recognize the combustion conditions of flame from the surveillance video accurately, and the combustion features and the feature analysis results can be stored in the da-tabase for further query.

参考文献/References:

[1]吴一全,朱丽,周怀春. 基于Krawtchouk矩和支持向量机的火焰状态识别[J]. 中国电机工程学报, 2014,34(5):734-740. WU Yiquan, ZHU Li, ZHOU Huaichun. State recognition of flame images based on krawtchouk moment and support vector machine[J]. Proceedings of the CSEE, 2014,34(5):734-740.
[2]Chacon Murguia M I, Perez Vargas F J. Thermal video analysis for fire detection using shape regularity and intensity saturation features[M]. Springer Berlin Heidelberg: Pattern Recognition, 2011: 118-126.
[3]于甲军,汤琪,周康. 基于图像处理的炉膛火焰燃烧诊断技术[J]. 能源工程,2013(2): 12-16. YU Jia-jun, TANG Qi, ZHOU Kang. Diagnosis of combustion based on image processing technology[J]. Energy Engineering, 2013(2): 12-16.
[4]范武亭. 基于多图像的炉膛火焰燃烧稳定性研究[D]. 合肥:合肥工业大学,2013.
[5]樊汝森,王勇,魏大乡, 等. 基于BP神经网络锅炉炉膛火焰可视化监测方法研究[J]. 计算机应用与软件,2015,32(2):101-104. FAN Rusen, WANG Yong,WEI Daxiang, et al. Research on visualized monitoring method for boiler furnace flame based on BP neural network[J]. Computer Applications and Software, 2015,32(2):101-104.
[6]Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing (Second Edition)[M]. Prentice Hall, 2003.
[7]N. Otsu. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics,1979.9(1): 62-66.
[8]Handi Cokrojoyo. Analysis of flame images in gas-fired furnaces[D]. Ph.D. Thesis, University of Missouri-Columbia, August, 2007:42-62.
[9]何强,何英. MATLAB扩展编程[M]. 北京:清华大学出版社,2002:121-155.
[10]Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins. Digital Image Processing Using MATLAB[M]. Pearson Prentice Hall, 2003.

相似文献/References:

备注/Memo

备注/Memo:
冶金自动化与检测技术教育部工程研究中心开放基金项目(MARC201305);国家自然科学基金项目(61371190)
更新日期/Last Update: 2016-04-15