|本期目录/Table of Contents|

[1]赵洪磊,刘全桢,张笑,等.雷击时地下空间电磁场与负载感应电磁场的仿真计算[J].中国安全生产科学技术,2015,11(3):123-128.[doi:10.11731/j.issn.1673-193x.2015.03.020]
 ZHAO Hong-lei,LIU Quan-zhen,ZHANG Xiao,et al.Simulation calculation on electromagnetic field in underground space and load induced electromagnetic field in case of lightning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(3):123-128.[doi:10.11731/j.issn.1673-193x.2015.03.020]
点击复制

雷击时地下空间电磁场与负载感应电磁场的仿真计算
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
11
期数:
2015年3期
页码:
123-128
栏目:
职业安全卫生管理与技术
出版日期:
2015-03-30

文章信息/Info

Title:
Simulation calculation on electromagnetic field in underground space and load induced electromagnetic field in case of lightning
作者:
赵洪磊12刘全桢2张笑1王殿生1
(1. 中国石油大学<华东>理学院,山东省高校新能源物理与材料科学重点实验室,山东青岛266580; 2. 中国石油化工股份有限公司 青岛安全工程研究院,山东青岛266071)
Author(s):
ZHAO Hong-lei12 LIU Quan-zhen2 ZHANG Xiao1 WANG Dian-sheng1
(1. Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, College of Science, China University of Petroleum, Qingdao Shandong 266580, China; 2. SINOPEC Safety Engineering Institute, Qingdao Shandong 266071, China)
关键词:
雷电电磁辐射FDTD仿真地下空间感应电压感应电流
Keywords:
LEMP FDTD simulation underground space induced voltage induced current
分类号:
X959
DOI:
10.11731/j.issn.1673-193x.2015.03.020
文献标志码:
A
摘要:
随着高新电子技术的迅猛发展,雷电电磁辐射给人们的生产生活造成的危害越来越大。为了分析雷电电磁辐射的危害,基于MTLE雷电回击模型,以及北京地区实测雷电流波形,采用三维时域有限差分(FDTD)方法,计算了雷击时地下空间中的电磁场,并对线缆终端负载进行了雷电电磁耦合,计算了负载上的雷电感应电压和感应电流。计算结果表明,土壤对雷电电磁场的屏蔽并不彻底,地下空间仍需要进行防雷设计;线缆终端负载上感应的电压和电流峰值可达数百千伏和数百安培,并且其数值随雷电波波头时间的减小而增大,对当前大多数自动化系统危害严重。
Abstract:
With the rapid development of high-tech electronic technology, the damage made by LEMP to people's production and life is becoming bigger. To analyze the damage of LEMP, the lightning induced electromagnetic field in underground space was calculated by using FDTD method based on MTLE lightning return-stroke model and the measured lightning current waveform in Beijing. The electromagnetic coupling of the cable terminal load was conducted, and the lightning induced voltage and current on load were calculated. The results showed that soil shielding against lightning induced electromagnetic field is not complete, and lightning protection design is still needed in underground space. The peak values of lightning induced voltage and current on load can up to hundreds of kilo-volts and hundreds of amperes, and the values increase with the decrease of front time of lightning currents, which causes serious harm to most of the current automation systems.

参考文献/References:

[1]李涵, 邓雨荣, 朱时阳, 等. 海-陆混合路径对雷电电磁场传播的影响[J]. 电工技术学报, 2014, 29(1): 229-235 LI Han, DENG Yu-rong, ZHU Shi-yang, et al. Propagation effects of the rough and ocean-land mixed path on the lightning-radiated electromagnetic fields[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 229-235
[2]陈亚洲, 王晓嘉, 万浩江, 等. 基于斜向放电通道的地表雷电电磁场特性分析[J]. 高电压技术, 2012, 38(11): 2805-2814 CHEN Ya-zhou, WANG Xiao-jia, WAN Hao-jiang, et al. Characteristics analysis of surficial lightning electromagnetic field for oblique discharge channel[J]. High Voltage Engineering, 2012, 38(11): 2805-2814
[3]王祥. 油库电气设备[M]. 北京:中国石化出版社, 2007
[4]田明宏, 盛松林, 魏明, 等. 基于DU模型雷电回击电磁场的计算[J]. 高电压技术, 2002, 28(9): 34-36 TIAN Ming-hong, SHENG Song-lin, WEI Ming, et al. Calculation of the electromagnetic fields of lightning return stroke based on DU model[J]. High Voltage Engineering, 2002, 28(9): 34-36
[5]陈亚洲, 刘尚合, 魏明, 等. 雷电电磁场的空间分布[J]. 高电压技术, 2003, 29(11): 1-22 CHEN Ya-zhou, LIU Shang-he, WEI Ming, et al. Distribution of LEMP above ground level[J]. High Voltage Engineering, 2003, 29(11): 1-22
[6]杨栋新. 基于时域有限差分方法的雷电辐射电磁场的分析研究[D]. 河北: 华北电力大学, 2008
[7]杨华. 雷电电磁场FDTD分析[D]. 青岛: 中国海洋大学, 2008
[8]李谦. 基于时域有限差分方法的雷电辐射电磁场计算[D]. 河北: 华北电力大学, 2007
[9]余占清, 曾嵘, 王绍安, 等. 配电线路雷电感应过电压仿真计算分析[J]. 高电压技术, 2013, 39(2): 415-422 YU Zhan-qing, ZENG Rong, WANG Shao-an, et al. Simulation calculation and analysis of lightning induced overvoltage on power distribution lines[J]. High Voltage Engineering, 2013, 39(2): 415-422
[10]任合明, 周璧华, 余同彬, 等. 雷电电磁脉冲对架空电力线的耦合效应[J]. 强激光与粒子束, 2005, 17(10): 1539-1543 REN He-ming, ZHOU Bi-hua, YU Tong-bin, et al. The coupling effect of LEMP to overhead power lines[J]. High Power Laser and Particle Beams, 2005, 17(10): 1539-1543
[11]解璞, 赵锦成, 王川川, 等. 军用电站电缆雷电感应过电压影响因素研究[J]. 兵工学报, 2014, 35(2): 214-219 JIE Pu, ZHAO Jin-cheng, WANG Chuan-chuan, et al. Research on the influence factors of lightning-induced over-voltage on military power supply cables[J]. Acta Armamentarii, 2014, 35(2): 214-219
[12]Pokharel R K, Ishii M, Baba Y. Numerical electromagnetic analysis of lightning-induced voltage over ground of finite conductivity[J]. IEEE Trans EMC, 2003, 45(1):651-656
[13]胡正伟. 雷电波波头、波尾时间数值分布的统计分析[J]. 高电压技术, 1997, 23(4): 71-72 HU Zheng-wei. Calculation and analysis of the time parameters of lightning waves[J]. High Voltage Engineering, 1997, 23(4): 71-72
[14]魏明. 雷电电磁脉冲及其防护[M]. 北京: 国防工业出版社, 2012: 61
[15]F. Heidler. Traveling current source model for LEMP calculation[M]. In: Proc. 6th Int. Zurich Symp. Electromagn. Compat. Zurich, Switzerland, Mar. 1985. 157~162
[16]赵洪磊, 刘全桢, 毕晓蕾, 等. 典型雷电流频谱能量研究及危害分析[J]. 电瓷避雷器, 2014, 4(4): 78-81 ZHAO Hong-lei, LIU Quan-zhen, BI Xiao-lei, et al. Spectrum energy research and hazard analysis of typical lightning current[J]. Insulators and Surge Arresters, 2014, 4(4): 78-81

相似文献/References:

备注/Memo

备注/Memo:
国家“十二五”科技支撑计划课题项目(2012BAK03B03);中央高校基本科研业务费专项资金资助项目(13CX05017A,14CX02026A)
更新日期/Last Update: 2015-03-30