|本期目录/Table of Contents|

[1]李长俊,季楚凌,陈磊,等.气固两相流下球阀磨损特性研究[J].中国安全生产科学技术,2015,11(3):5-11.[doi:10.11731/j.issn.1673-193x.2015.03.001]
 LI Chang-jun,JI Chu-ling,CHEN Lei,et al.Research on erosion characteristics of ball valve under gas-solid two-phase flow[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(3):5-11.[doi:10.11731/j.issn.1673-193x.2015.03.001]
点击复制

气固两相流下球阀磨损特性研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
11
期数:
2015年3期
页码:
5-11
栏目:
学术论著
出版日期:
2015-03-30

文章信息/Info

Title:
Research on erosion characteristics of ball valve under gas-solid two-phase flow
作者:
李长俊季楚凌陈磊马树锋
(西南石油大学 石油与天然气工程学院,四川成都610500)
Author(s):
LI Chang-jun JI Chu-ling CHEN Lei MA Shu-feng
(School of Petroleum Engineering, Southwest Petroleum University, Chengdu Sichuan 610500, China)
关键词:
球阀磨损FLUENT软件气固两相流开度流道直径
Keywords:
ball valve erosion FLUENT software gas-solid two-phase flow opening flow channel diameter
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2015.03.001
文献标志码:
A
摘要:
旋塞球阀是钻柱内防喷系统中的关键设备,在气固两相流下球阀易受磨损而失效,并造成严重的井喷事故。为此,将计算流体动力学理论与冲蚀磨损理论相结合,运用FLUENT软件对球阀壁面在气固两相流下的磨损分布情况进行研究,并进一步分析了球阀结构参数对于球阀壁面磨损的影响规律。结果表明:当气固两相流流经球阀时,固体颗粒会与气流分离,并在壁面上产生三处磨损集中区;随着球阀开度的减小,球阀壁面磨损量会急剧增大,且阀球内通道壁面上的磨损集中区由块状逐步转化为带状,而球阀出口处的磨损集中区则会逐渐向下移动;球阀流道直径的减小也会使得壁面磨损量增加,但磨损集中区的分布基本不变。研究结果可为进一步优化球阀流道结构以减轻其壁面磨损提供理论依据。
Abstract:
Ball valve is an important equipment in blowout prevention system within drill string, and the erosion of ball valve under gas-solid two-phase flow could result in its failure, which may cause serious blowout accident. So a mathematic model of gas-solid two-phase flow and erosion for ball valve was established based on the combining of computational fluid dynamics theory and erosion theory. The erosion situation of ball valve wall under gas-solid two-phase flow was studied by using FLUENT software, and the effects of valve structure parameters and particle characteristics on erosion in the wall were further analyzed. The results showed that during the gas-solid two-phase flow process in the ball valve, solid particles will separate from gas flow and there are three main concentrating areas of erosion on the wall. With the decrease of ball valve opening, the erosion quantity increases sharply, the concentrating area located in valve flow channel wall experiences the transition from block to band, and the region near the valve outlet moves downward. In addition, reducing flow channel diameter also makes the increase of erosion quantity, but the distribution of concentrating areas remains basically unchanged. The study results can be a theoretical foundation for further study on improving flow channel structure of ball valve to reduce the wall erosion.

参考文献/References:

[1]Zhu X, Liu S, Tong H, et al. Experimental and numerical study of drill pipe erosion wear in gas drilling[J]. Engineering Failure Analysis, 2012, (26): 370-380

[2]陈浩. 采气井口装置主要零部件的失效分析[J]. 西南石油学院学报, 1998, 20(1):64-67CHEN Hao. Failure analysis for the main component parts of wellhead equipment[J]. Journal of Southwest Petroleum Institute, 1998, 20(1):64-67

[3]Nkleberg L, Sntvedt T. Erosion of oil&gas industry choke valves using computational fluid dynamics and experiment[J]. International Journal of Heat and Fluid Flow, 1998, 19(6): 636-643

[4]Wheeler D W, Wood R J K, Harrison D, et al. Application of diamond to enhance choke valve life in erosive duties[J]. Wear, 2006, 261(10): 1087-1094

[5]Fang X, Yao J, Yin X, et al. Physics-of-failure models of erosion wear in electrohydraulic servovalve, and erosion wear life prediction method[J]. Mechatronics, 2013, 23(8): 1202-1214

[6]Forder A, Thew M, Harrison D. A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear, 1998, 216(2): 184-193

[7]Atkinson M, Stepanov E V, Goulet D P, et al. High pressure testing sand erosion in 3D flow channels and correlation with CFD[J]. Wear, 2007, 263(1): 270-277

[8]Zhu H, Pan Q, Zhang W, et al. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters[J]. Nuclear Engineering and Design, 2014, 273: 396-411.e

[9]王福军. 计算流体动力学分析—CFD软件原理与应用[M]. 北京:清华大学出版社, 2004: 127-130

[10]Edwards J K, McLaury B S, Shirazi S A. Evaluation of alternative pipe bend fittings in erosive service[C]. Proceedings of ASME FEDSM’00: ASME 2000 Fluids Engineering Division Summer Meeting, Boston, June 11-15, 2000

相似文献/References:

[1]陈磊,李长俊,陈尚周.球阀处硫颗粒运移沉降规律数值模拟研究[J].中国安全生产科学技术,2016,12(1):90.[doi:10.11731/j.issn.1673-193x.2016.01.017]
 CHEN Lei,LI Changjun,CHEN Shangzhou.Numerical simulation on laws of movement and settlement for sulfur particles in ball valve[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):90.[doi:10.11731/j.issn.1673-193x.2016.01.017]
[2]周兰,张红,陈文康,等.页岩气压裂管汇弯头的冲蚀磨损影响分析*[J].中国安全生产科学技术,2020,16(10):53.[doi:10.11731/j.issn.1673-193x.2020.10.008]
 ZHOU Lan,ZHANG Hong,CHEN Wenkang,et al.Analysis on erosion wear effect of fracturing manifold elbow in shale gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):53.[doi:10.11731/j.issn.1673-193x.2020.10.008]

备注/Memo

备注/Memo:
国家自然科学基金项目(51174172);教育部博士点专项科研基金项目(20125121110003)
更新日期/Last Update: 2015-03-30