|本期目录/Table of Contents|

[1]褚云.国内外易燃易爆气体传感器的分类与比较[J].中国安全生产科学技术,2014,10(12):112-118.[doi:10.11731/j.issn.1673-193x.2014.12.019]
 CHU Yun.The classification and comparison of domestic and foreign gas sensors for flammable and explosive gas detection[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(12):112-118.[doi:10.11731/j.issn.1673-193x.2014.12.019]
点击复制

国内外易燃易爆气体传感器的分类与比较
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
10
期数:
2014年12期
页码:
112-118
栏目:
职业安全卫生管理与技术
出版日期:
2014-12-31

文章信息/Info

Title:
The classification and comparison of domestic and foreign gas sensors for flammable and explosive gas detection
作者:
褚云
(中国安全生产科学研究院, 重大危险源监控与事故应急技术国家安全监管总局安全生产重点实验室,北京100012)
Author(s):
CHU Yun
(Key Laboratory of Major Hazard control and Accident Emergency Technology, State Administration of Work Safety, China Academy of Safety Science and Technology, Beijing China, 100012)
关键词:
气体传感器易燃易爆气体感应元件
Keywords:
Gas Sensors Flammable and Explosive gas Sensing element
分类号:
X924.2
DOI:
10.11731/j.issn.1673-193x.2014.12.019
文献标志码:
A
摘要:
随着工业化进程的加快,为满足对易燃易爆气体监测的要求,简要介绍了气体传感器的重要性及其发展历程。根据其工作原理的不同将易燃易爆气体传感器分为六类,并阐述了各类气体传感器的工作原理、检测气体范围及优缺点分析。最后对各类传感器的性能指标进行了对比并对未来发展方向提出建议。
Abstract:
Due to the development of industrialization, there is an increasing demand for the detection of flammable and explosive gases. This paper briefly introduced the importance and history of gas sensors. Sensors targeting flammable and explosive gas were divided into six categories according to their working principles. The working principle, manufacturing techniques, target gases, advantages and disadvantages of the sensors were demonstrated. Key performance factors were compared among each category and directions for future development were given in the end of the paper.

参考文献/References:

[1]魏利军, 多英全, 于立见, 等. 化工园区安全规划主要内容探讨 [J]. 中国安全生产科学技术,2007, 3(5):16-19
[2]N. Yamazoe. Toward innovations of gas sensor technology. Sensors and Actuators B. 2005, 108:2-14
[3]Industry Report, Sensors Market 2016 [R]. Freedonia. 2013
[4]K. Arshak, E. Moore, G. M. Lyons, J. Harris, S. Clifford. A review of gas sensors employed in electronic nose applications [J]. Sensor Review. 2004, 24:181-198
[5]B. C. Munoz, G. Steinthal, S. Sunshine. Conductive polymer-carbon black composites-based sensor arrays for use in an electronic nose [J]. Sensor Review. 1999, 19:300-305
[6]A. J. Heeger. Semiconducting and metallic polymers: the fourth generation of polymeric materials [J]. Current Applied Physics. 2001, 1:247-267
[7]J. M. Charlesworth, A. C. Partridge, N. Garrard. Mechanistic studies on the interactions between poly (pyrrole) and organic vapors[J]. Journal of Physical Chemistry. 1993, 97:5418-5423
[8]D. E. Williams. Semiconducting oxides as gas-sensitive resistors [J]. Sensors and Actuators B. 1999, 57:1-16
[9]N. Barsan, D. Koziej and U. Weimar. Metal oxide-based gas sensor research: How to [J]. Sensors and Acutators B. 2007, 121:18-35
[10]E. Schaller, J. O. Bosset, F. Escher. Electronic noses and their application to food [J]. Lebensmittel Wissenschaft und-Jechnologie. 1998, 31:305-316
[11]G. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattogno, A. Setkus. Temperature dependencies of sensitivity and surface chemical composition of SnOx gas sensors [J]. Sensors and Actuators B. 1995, 25:516-519
[12]J. Huang, D. Kuo, B. Shew. The effects of heat treatment on the gas sensitivity of reactively sputtered SnO2 films [J]. Surface and Coatings Technology. 1996, 79:263-267
[13]Y. Hu, O. K. Tan, J. S. Pan, H. Huang, W. Cao. The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sensors and Actuators B. 2005, 108:244-249
[14]K. Kato, H. Omoto, T. Tomioka, A. Takamatsu. Optimum packing density and crystal structure of tin-doped indium oxide thin films for high-temperature annealing processes [J]. Applied Surface Science. 2011, 257:9207-9212
[15]G. Korotcenkov, B. K. Cho. Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1 Improvement of sensor sensitivity and selectivity [J]. Sensors and Actuators B. 2013, 188:709-728
[16]G. Kor+P125otcenkov, I. Boris, V. Brinzari, S. H. Han, B. K. Cho. The role of doping effect on the response of SnO2-based thin film gas sensors: Analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis [J]. Sensors and Actuators B. 2013, 182:112-124
[17]S. J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, W. Wlodarski. Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts [J]. Sensors and Actuators B. 2005, 108:154-158
[18]J. W. Gardner, P. N. Bartlett. Electronic Noses - Principles and Applications [M]. Oxford, UK: Oxford University Press, 1999
[19]J. Yinon. Detection of explosives by electronic noses [J]. Analytical Chemistry. 2003, 75:99-105
[20]Y. Chu, D. Mallin, M. Amani, M. J. Platek, O. J. Gregory. Detection of Peroxides using Pd/SnO2 Nanocomposite Catalysts [J]. Sensors and Actuators, B. 2014, 197:376-384
[21]宋小坚. 可燃气体传感器研究进展 [J]. 煤气与热力. 2010, 30(5): A40-A42
[22]K. Brudzewski, S. Osowski, W. Pawlowski. Metal oxide sensor arrays for detection of explosives at sub-parts-per million concentration levels by the differential electronic nose [J]. Sensors and Actuators B. 2012, 161:528-533
[23]P. Bunyan, C. Baker, N. Rurner. Application of heat conduction calorimetry to high explosives [J]. Thermochimica Acta. 2003, 401:9-16
[24]Y. Liu, V. M. Ugaz, S. W. North, W. J. Rogers, S. Mannan. Development of a miniature calorimeter for identification and detection of explosives and other energetic compounds [J]. Journal of Hazardous Materials. 2007, 142:662-668
[25]A. Matin, C. Yun, K. L. Waterman, C. M. Hurley, M. J. Platek, O. J. Gregory. Detection of triacetone triperoxide (TATP) using a thermodynamic based gas sensor [J]. Sensors and Actuators B. 2012, 162:7-13
[26]J. Lerchner, D. Caspary, G. Wolf. Calorimetric detection of volatile organic compounds [J]. Sensors and Actuators B. 2000, 70:57-66
[27]马戎, 周王民, 陈明. 气体传感器的研究及发展方向[J]. 航空计测技术, 2004, 24(4):1-4
[28]V. Lopez-Avila, H. H. Hill. Field analytical chemistry [J]. Analytical Chemistry. 1997, 69:289-306
[29]J. Janata, M. Josowicz, P. Vanysek, D. Michael DeVaney. Chemical sensors [J]. Analytical Chemistry. 1998, 70:179-208
[30]M. S. Meaney, V. L. McGuffin. Luminescence-based methods for sensing and detection of explosives [J]. Analytical and Bioanalytical Chemistry. 2008, 391:2557-2576
[31]F. Chu, J. Yang. Study of nitro aromatic explosives sensor based on fluorescence quenching [J]. Optik - International Journal for Light and Electron Optics. 2011, 122:2246-2248
[32]张立萍, 张帆. 红外甲烷传感器的实时温度校正模型的建立. 煤矿安全, 2005, 36(7): 1-3
[33]李黎, 王一丁, 李树维. 红外气体检测技术在天然气安全生产中的应用 [J]. 天然气工业, 2011, 31(1): 96-99
[34]党敬民等. 基于红外光谱技术的混合气体检测系统概述 [J]. 光谱学与光谱分析, 2014, 34(10): 2851-2857
[35]A. P. Demchenko. Introduction to Fluorescence Sensing [J]. Netherland: Springer Netherlands, 2009
[36]黄楠韬. 几种重要气体传感器的特性分析 [J]. 华北科技学院学报, 2009, 6(3):117-118
[37]M. K. Habib. Controlled biological and biomimetic systems for landmine detection [J]. Biosensors and Bioelectronics. 2007, 23:1-18
[38]D. Kriz, R. J. Ansell. Man Made Mimics of Antibodies and their Application in Analytical Chemistry [J]. Molecularly Imprinted Polymers. 2001, 23:417-436
[39]S. Singh. Sensors-An effective approach for the detection of explosives [J]. Journal of Harzardous Materials. 2007, 144:15-28
[40]Z. P. Khlebarov. Surface acoustic wave gas sensor [J]. Sensors and Actuators B. 1992, 8:33-40
[41]A. Afzal, N. Iqbal, A. Mujahid, R. Schirhagl. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review [J]. Analytica Chimica Acta. 2013, 787:36-49
[42]吴玉锋, 田彦文, 韩元山, 等. 气体传感器研究进展和发展方向. [J]. 计算机测量与控制, 2003, 11(10): 731-734
[43]G. Korotcenkov. Metal oxides for solid state gas sensors: what determines our choice [J]. Material Science and engineering B. 2007, 139:1-23

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-12-30