|本期目录/Table of Contents|

[1]王鹏,王全国,党文义,等.大型LNG储罐翻滚事故放空气扩散后果模拟[J].中国安全生产科学技术,2014,10(11):174-179.[doi:10.11731/j.issn.1673-193x.2014.11.030]
 WANG Peng,WANG Quan-guo,DANG Wen-yi,et al.Simulation on diffusion consequence of vent gas in rollover accident of large LNG storage tank[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(11):174-179.[doi:10.11731/j.issn.1673-193x.2014.11.030]
点击复制

大型LNG储罐翻滚事故放空气扩散后果模拟
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
10
期数:
2014年11期
页码:
174-179
栏目:
职业安全卫生管理与技术
出版日期:
2014-11-30

文章信息/Info

Title:
Simulation on diffusion consequence of vent gas in rollover accident of large LNG storage tank
作者:
王鹏12王全国12党文义12韩中枢12
(1.中国石化青岛安全工程研究院,山东青岛266071; 2.化学品安全控制国家重点实验室,山东青岛266071)
Author(s):
WANG Peng12 WANG Quan-guo12 DANG Wen-yi12 HAN Zhong-shu12
(1.Qingdao Safety Engineering Institute, SINOPEC, Qingdao Shandong 266071, China; 2.State Key Laboratory of Safety and Control for Chemicals, Qingdao Shandong 266071, China)
关键词:
LNG大型储罐翻滚事故放空扩散
Keywords:
LNG large storage tank rollover accident vent diffusion
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2014.11.030
文献标志码:
A
摘要:
发生翻滚事故时,大型LNG储罐内压力急剧升高,为防止储罐超压破裂,大量的天然气通过安全阀放空,而天然气具有易燃易爆的特点,可能在LNG接收站的装置区及罐区发生爆炸。利用计算流体力学的方法对不同风速、风向下放空气的扩散过程进行了模拟,得到CH4的浓度分布情况。结果表明:大气风速对放空气的扩散过程具有影响,当风速逐渐增大时,降落到地面的CH4逐渐增多,而当风速超过7m/s时,随着风速的增大,降落到地面的CH4开始减少。随着风速的增大,50%LEL影响范围逐渐减小。各种风速条件下,装置区和罐区CH4的浓度均未达到50%LEL,因此LNG储罐发生翻滚事故时,放空气不会形成爆炸性气氛。
Abstract:
When occurring rollover accident, the pressure in the large LNG storage tank will rise sharply. In order to prevent the storage tank from overpressure and rupture, a large number of natural gas vent through the safe valve mounted on the top of tank, which may lead to explosion in the unit area and tank zones of LNG receiving station due to the flammable and explosive characteristics of natural gas. Based on the computational fluid dynamics (CFD) technology, the diffusion processes of vent gas under different wind velocities and wind directions were simulated, and the concentration distributions of CH4 were obtained. The results showed that the wind speed had an influence on the diffusion process of vent gas. The amount of CH4 falling to the ground increased as the wind speed increased. If the wind speed exceeded 7m / s, the amount of CH4 fall to ground decreased as the wind speeds increased. 50% LEL scope of CH4 decreased as the wind speed increased. Under various wind speed conditions, both the concentration of CH4 in the storage tank area and the device area did not reach 50% LEL, therefore the vent gas in rollover accident of large LNG storage tank would not form explosive atmosphere.

参考文献/References:

[1]刘勇. 液化天然气的危险性与安全防护[J]. 天然气工业, 2004, 24(7):105-107 LIU Yong. Dangers and safe guards of LNG[J]. Natural Gas Industry, 2004, 24(7):105-107
[2]吴策宇,党文义,刘晓龙. LNG接收站选址安全距离研究[J]. 中国安全生产科学技术, 2012, 8(6):167-172 WU Ce-yu, DANG Wen-yi, LIU Xiao-long. Study on the safe distance for siting of LNG receiving terminal[J]. Journal of Safety Science and Technology, 2012, 8(6):167-172
[3]王海蓉,马晓茜.液化天然气(LNG)储存容器中的分层与翻滚[J]. 低温工程, 2006, (1):50-54 WANG Hai-rong, MA Xiao-qian. Stratification and rolling of liquid natural gas in storage tank[J]. Cryogenics, 2006, (1):50-54
[4]Bates S, Morrison D S. Modelling the behaviour of stratified liquid natural gas in storage tanks: a study of the rollover phenomenon [J]. International journal of heat and mass transfer , 1997, 40 (8): 1875-1884
[5]Gavelli F, Bullister E, Kytomaa H. Application of CFD (Fluent) to LNG spills into geometrically complex environments[J]. Journal of hazardous materials. 2008, 159(1): 158-168
[6]Gavelli F, Chernovsky M K, Bullister E, et al. Modeling of LNG spills into trenches[J]. Journal of hazardous materials, 2010, 180(1): 332-339
[7]Pitblado R, Baik J, Raghunathan V. LNG decision making approaches compared[J]. Journal of hazardous materials, 2006, 130(1): 148-154
[8]Tauseef S M, Rashtchian D, Abbasi S A. CFD-based simulation of dense gas dispersion in presence of obstacles[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 371-376
[9]Qi R, Ng D, Cormier B R, et al. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX[J]. Journal of hazardous materials, 2010, 183(1): 51-61
[10]Sun B, Utikar R P, Pareek V K, et al. Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 117-128
[11]陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001:1-5

相似文献/References:

[1]吴策宇,党文义,刘晓龙.LNG接收站选址安全距离研究[J].中国安全生产科学技术,2012,8(6):167.
 WU Ce yu,DANG Wen yi,LIU Xiao long.Study on the safe distance for siting of LNG receiving terminal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(11):167.
[2]林小侦,于光认,魏利军,等.液化天然气在水面地面扩散对比研究[J].中国安全生产科学技术,2014,10(8):86.[doi:10.11731/j.issn.1673-193x.2014.08.015]
 LIN Xiao-zhen,YU Guang-ren,WEI Li-jun,et al.Comparative study of LNG dispersion on water and ground[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(11):86.[doi:10.11731/j.issn.1673-193x.2014.08.015]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-11-30