|本期目录/Table of Contents|

[1]易高翔,潘长城,郭建中,等.基于多源数据融合的石油罐区安全监控模型[J].中国安全生产科学技术,2014,10(3):90-94.[doi:10.11731/j.issn.1673-193x.2014.03.015]
 YI Gao xiang,PAN Chang cheng,GUO Jian zhong,et al.Study on safety monitoring model of petroleum tank farm based on multisource data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(3):90-94.[doi:10.11731/j.issn.1673-193x.2014.03.015]
点击复制

基于多源数据融合的石油罐区安全监控模型
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
10
期数:
2014年3期
页码:
90-94
栏目:
职业安全卫生管理与技术
出版日期:
2014-03-28

文章信息/Info

Title:
Study on safety monitoring model of petroleum tank farm based on multisource data fusion
作者:
易高翔1 潘长城2 郭建中2王时彬3 王如君1康荣学1
(1.中国安全生产科学研究院, 北京100012;2.首都经济贸易大学 安全与环境工程学院, 北京100070; 3.昆明理工大学 国土资源工程学院, 云南昆明650093 )
Author(s):
YI Gaoxiang1 PAN Changcheng2 GUO Jianzhong2 WANG Shibin3 WANG Rujun1 KANG Rongxue1
(1.China Academy of Safety Science and Technology, Beijing 100029, China; 2.College of Safety and Environmental Engineering, Capital University of Economics and Business, Beijing 100070, China; 3. Faculty of Land Resource,Kunming University of Science and Technology,Kunming Yunnan 650093, China)
关键词:
石油罐区多源数据融合BP神经网络最优加权融合
Keywords:
oil tank farm data fusion BP neural network optimal weighted fusion
分类号:
X924.3
DOI:
10.11731/j.issn.1673-193x.2014.03.015
文献标志码:
A
摘要:
由于单一传感器在石油罐区安全监控中容易受到外界因素影响从而产生误差,为提高传感器检测结果的可靠性和罐区安全监控预警的准确性,基于多源数据融合技术,建立罐区安全状态预警模型。首先,介绍了多源数据融合技术的3个层级: 数据级融合,特征级融合和决策级融合,以及目前各领域常见的数据融合方法;其次,建立了基于最优加权融合算法的一级融合模型和基于BP神经网络算法的二级融合模型;最后,得到石油罐区安全监控数据融合模型,并为进一步的实践应用打下了理论基础。
Abstract:
Due to the single sensor in the safety monitoring of oil tank farm is easily influenced by external factors and resultes in errors, in order to improve the reliability of sensor detection and the accuracy of tank farm safety monitoring, based on the multisource data fusion technology, an early-worning model of safety status in tank farm was established. Firstly the 3 levels of multisource data fusion technology were introduced including data level fusion, feature level fusion and decision level fusion, as well as the common data fusion methods. Secondly the 1st level fusion model based on optimal weighted fusion algorithm and 2nd level fusion model based on BP neural network algorithm were established. Ffinally safety monitoring data fusion model of oil tank farm was obtained, which provides the theory basis for further practice application.

参考文献/References:

[1]刘彬,冉蜀阳. 采用多传感器数据融合技术的消防报警系统[J].中国测试技术,2006,32(6):132134 LIU Bin, RAN Shuyang. Multi sensor data fusion technology of fire alarm system[J]. China Testing Technology,2006,32(6):132134.
[2]李文敏,王改云.多传感器数据融合技术在温度检测中的应用[J].机械设计与制造,2009,(4):103104 LI Wenmin, WANG Gaiyun. Application of multi sensor data fusion technology in the temperature detection [J]. Mechanical Design and Manufacturing,2009, (4): 103104.
[3]张晓雨,黄伟志. 多传感器信息融合技术及其在矿井环境监测中的应用 2010亚太信息论会议[C]. 科学研究,2010:1013 ZHANG Xiaoyu, HUANG Weizhi. Application of multisensor information fusion technology in mine monitoring system[J]. The 2010 Asia Pacific Conference on Information Theory [C]. Scientific Research,2010:1013.
[4]朱泽君,黄涛,刘曦霞,等. 多传感器数据融合技术研究现状及发展方向[J].舰船电子工程,2009,29(2):1316 ZHU Zejun, HUANG Tao, LIU Xixia, et al. Research status and development direction of multi sensor data fusion technology[J]. Ship Electronic Engineering,2009,29(2):1316.
[5]孙勇,景博,张吉力.最优加权与递推最小二乘法相结合的多传感器信息融合[J].传感技术学报,2004(4):630632,654 SUN Yong, JING Bo, ZHANG Jili. Multi sensor information fusion optimal weighting and recursive least squares method combining[J]. Journal of transducer technology,2004(4):630632,654.
[6]孙勇,景博,王旭.基于集中式最优加权融合算法改善分布式参数检测性能[J].测控技术,2004,23(11):1112 SUN Yong, JING Bo, WANG Xu. To improve the detection performance of the distributed parameters based on centralized optimal weighting fusion[J]. Measurement and control technology,2004,23(11):1112.
[7]谢振南.多传感器信息融合技术研究[D].广州:广东工业大学,2013 XIE Zhennan. Study on technology of multi sensor information fusion[D]. Guangzhou:Guangdong University of Technology,2013.
[8]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M]. 北京:电子工业出版社,2005:3637 Fei Si Technology R & D Center. Neural network theory and the realization of MATLAB7 [M]. Beijing: Publishing House of Electronics Industry, 2005:3637.
[9]刘萍. 基于多传感器融合的矿井环境监测系统研究[J].矿山机械,2013,44(6):110113 LIU Ping.Study on mine environment monitoring system based on multi sensor data fusion[J]. Mining Machinery,2013,44(6):110113.
[10]何南南. 多传感器信息融合技术在火灾探测中的应用[D]. 西安:长安大学,2012 HE Nannan. Application of multi sensor information fusion technology in fire detection[D].Xi'an: Chang'an University,2012 .
[11]易高翔,王如君,朱天玲,等. 基于三维GIS的油罐区应急管理平台研究与实现[J]. 中国安全生产科学技术,2013,9(11):109113 YI Gaoxiang, WANG Rujun, ZHU Tianling, et al. Reasearch and implementation of oil tank emergency management platform based on the 3D GIS[J]. Journal of Safety Sceince and Technology,2013,9(11):109113

相似文献/References:

备注/Memo

备注/Memo:
“十二五”国家科技支撑计划项目(2012BAK03B03)
更新日期/Last Update: 2014-03-30