|本期目录/Table of Contents|

[1]崔铁军,马云东.基于土压平衡盾构施工的双层地铁隧道引起地面沉降分析[J].中国安全生产科学技术,2013,9(12):78-84.[doi:10.11731/j.issn.1673-193x.2013.12.013]
 CUI Tie jun,MA Yun dong.Study on surface settlement predictions for double layer metro tunnels excavated by EPBTBM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(12):78-84.[doi:10.11731/j.issn.1673-193x.2013.12.013]
点击复制

基于土压平衡盾构施工的双层地铁隧道引起地面沉降分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
9
期数:
2013年12期
页码:
78-84
栏目:
学术论著
出版日期:
2013-12-30

文章信息/Info

Title:
Study on surface settlement predictions for double layer metro tunnels excavated by EPBTBM
作者:
崔铁军123马云东2
(1. 安全科学与工程学院,辽宁工程技术大学,辽宁阜新123000; 2. 辽宁省隧道与地下结构工程技术研究中心, 大连交通大学, 辽宁大连116028; 3.沈阳华慧科技有限公司,辽宁沈阳110000)
Author(s):
CUI Tiejun123 MA Yundong2
1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin Liaoning 123000, China; 2. Tunnel & Underground Structure Engineering Center of Liaoning, Dalian Jiaotong University, Dalian Liaoning 116028, China; 3. Shen Yang China WitTech Company, Shenyang Liaoning 110000, China)
关键词:
地面沉降分析双层往返盾构施工FLAC3D模拟
Keywords:
surface settlement analysis doublelayer and roundtrip shield construction FLAC3D simulation
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2013.12.013
文献标志码:
A
摘要:
为了研究双线上下层盾构隧道施工时的短期地面沉降,以大连地铁二号西安路到交通大学区间盾构隧道施工为背景,使用Flac3D软件进行沉降的有限差分分析,模拟了地下隧道的掘进、支护和掌子面支护等。针对大连典型的地质特征进行预测,这些特征是决定地面沉降量的关键因素。研究区域的地质构造从地面向下分别为素填土、卵石、板岩。通过模拟上下双层非对称往返施工的盾构隧道施工过程,及掘进、支护和掌子面支护等详细步骤,得到了其单向和双向往返施工时的地面沉降,进而可分析其沉降规律。结果显示,上层隧道施工时,将降低岩层承载能力,同时改变下层隧道的土体平衡,加剧沉降,所以沉降量较大且两侧的测点沉降量不对称。通过模拟与分析为在市内建筑物密集区域修建地铁隧道提供安全可行的方法。
Abstract:
In order to study the shortterm surface settlements caused by doublelayer shield tunnels construction, the shield tunnel construction of No. 2 subway Dalian from xi'an road to jiaotong university was taken as an engineering background. The settlement predictions were performed with finite element method by using FLAC3D. Excavation, ground support and face support steps in analyses were simulated as applied in the field. Predictions were performed for a typical geological zone of Dalian, which was considered as critical in terms of surface settlement. Geology in the study area was composed of fill, pebble and slate, respectively, starting from the surface. Through the simulation of shield tunnel construction process, such as excavation, ground support and face support steps, in which the two tube were excavated with doublelayer, roundtrip and asymmetric, the surface settlement of construction of the unidirectional and twoway back and forth were obtained, and then the role of settlement was analyzed. The results showed that the rock bearing capacity was reduced during the upper tunnel construction, which changed the balance of soil on the lower tunnel at the same time and increased settlement, so the settlement of points on either side were asymmetric and settlement value change was bigger. The simulation and analysis provide a safe and feasible method for metro tunnel construction in the dense regions of the buildings.

参考文献/References:

[1]Bilgin N, Ozbayir T, Sozak N, Eyigun Y. Factors affecting the economy and the efficiency of metro tunnel drivage with two TBM’s in Istanbul in very fractured rock[J]. ITAWorld Tunnel Congress 2009, Safe tunnelling for the City and for the environment, 2009, 5: 2328
[2]O’Reilly MP, New BM. Settlement above tunnels in the United Kingdom—their magnitude and prediction[J]. Proceedings of the Tunneling 82 Conference, Brighton, 1982,3:173181
[3]Arioglu E.Surface movements due to tunneling activities in urban areas and minimization of building damages[J]. Short Course, Istanbul Technical University, Mining Engineering Department (in Turkish), 1992,5:123131
[4]Karakus M, Fowell RJ.Effects of different tunnel face advance excavation on the settlement by FEM[J]. Tunn Undergr Space Technol, 2003,18:513523
[5]Tan WL, Ranjit PG. Parameters and considerations in soft ground tunneling[J]. Electron J Geotech Eng, 2003,344
[6]Minguez F, Gregory A, Guglielmetti V. Best practice in EPB management[J]. Tunnels and Tunnelling International, 2005: 2125
[7]Minguez F, Gregory A, Guglielmetti V. Best practice in EPB management[J]. Tunnels and Tunnelling International, 2006:2125
[8]Attewell PB, Yeates J, Selby AR. Soil movement induced by tunneling and their effects on pipelines and structures[J]. Chapman and Hall, New York,1986
[9]李围.隧道及地下工程FLAC解析方法[M].北京:中国水利水电出版社, 2009:5459
[10]李好, 周绪红. 深基坑桩锚支护的弹塑性有限元分析[J].湖南大学学报, 2003, 30(3): 8689 LI Hao, ZHOU Xuhong. Elasticplastic FEM analysis of pileanchor protection in deep foundation pit[J]. Journal of Hunan University(Natural Sciences) , 2003, 30(3): 8689
[11]刘波. FLAC原理实例与应用指南[M].北京:人民交通出版社,2005:7476
[12]王洪德, 马云东, 崔铁军. 地铁施工过程数值仿真及安全性分析[M].北京:清华大学出版社,2013
[13]王洪德,崔铁军,马云东. 非均匀温度场盾构隧道衬砌结构热力偶合分析[C]. 沈阳:2012(沈阳)国际安全科学与技术学术研讨会论文集, 2012
[14]王洪德,崔铁军. 厚硬岩层盾构隧道施工对地下管线影响分析[J]. 地下空间与工程学报,2013,9(2):333338 WANG Hongde,CUI Tiejun. Analysis on influence of shield tunneling crossing thick and hard rock on buried pipeline[J]. Chinese Journal of Underground Space and Engineering,2013,9(2):333338
[15]王洪德,秦玉宾,崔铁军,等. 深基坑围护结构变形远程监测预警系统[J]. 辽宁工程技术大学学报(自然科学版), 2013,32(1):1418 WANG Hongde, QIN Yubin, CUI Teijun, et al. Longdistance monitoring and earlywarning system for support structure deformation at deep foundation pit[J]. Journal of Liaoning Technical University(Natural Science), 2013,32(1):1418
[16]王洪德,崔铁军,马云东. 深基坑施工过程仿真及地表沉降量验证[J]. 辽宁工程技术大学学报(自然科学版),2012,31(6):810813 WANG Hongde, CUI Tiejun, MA Yundong. Simulation of deep excavation process and verification analysis of ground surface settlement[J]. Journal of Liaoning Technical University(Natural Science),2012,31(6):810813〖FL)〖HJ〖HT〖ST〖WT〖LM

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51050003); 大连市科技计划项目(2011E15SF118)
更新日期/Last Update: 2013-12-30