|本期目录/Table of Contents|

[1]王金强,于竞宇,张琼,等.基于概率最大覆盖的水上险情应急设施选址研究*[J].中国安全生产科学技术,2025,21(4):182-188.[doi:10.11731/j.issn.1673-193x.2025.04.024]
 WANG Jinqiang,YU Jingyu,ZHANG Qiong,et al.Research on site selection of waterborne hazard emergency facilities based on maximum probability coverage[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2025,21(4):182-188.[doi:10.11731/j.issn.1673-193x.2025.04.024]
点击复制

基于概率最大覆盖的水上险情应急设施选址研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
21
期数:
2025年4期
页码:
182-188
栏目:
职业安全卫生管理与技术
出版日期:
2025-04-30

文章信息/Info

Title:
Research on site selection of waterborne hazard emergency facilities based on maximum probability coverage
文章编号:
1673-193X(2025)-04-0182-07
作者:
王金强于竞宇张琼吴继成王静峰林威
(1.合肥工业大学 土木与水利工程学院,安徽 合肥 230009;
2.安徽建工交通航务集团有限公司,安徽 合肥 230000;
3.安徽省招标集团股份有限公司,安徽 合肥 230051)
Author(s):
WANG Jinqiang YU Jingyu ZHANG Qiong WU Jicheng WANG Jingfeng LIN Wei
(1.School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei Anhui 230009,China;
2.AnHui Traffic & Shipping Engineering Co.,Ltd.,Hefei Anhui 230000,China;
3.Anhui Tendering Group Co.,Ltd.,Hefei Anhui 230051,China)
关键词:
水上险情应急设施选址概率最大覆盖人工蜂群算法
Keywords:
waterborne hazard site selection of emergency facility maximum probability coverage artificial bee colony algorithm
分类号:
X913
DOI:
10.11731/j.issn.1673-193x.2025.04.024
文献标志码:
A
摘要:
为优化水上险情应急设施选址,基于概率最大覆盖模型构建考虑水上险情救援拥挤情况的应急设施选址模型,提出1种利用共轭梯度法对人工蜂群算法进行局部改进的算法。对该模型进行求解,并将求解结果与ALNS算法在公开数据集上进行算例对比验证。研究结果表明:改进人工蜂群算法的计算结果基本接近基准值,且其收敛速度明显快于ALNS算法的标准收敛时间,证明了改进人工蜂群算法的科学性和有效性。同时在考虑到拥挤情况下,处理概率最大覆盖模型时改进人工蜂群算法的收敛速度要显著优于ALNS算法。研究结果可为水上应急救援网络规划、拥堵环境下多目标设施选址优化提供参考。
Abstract:
In order to optimize the site selection of emergency facilities for waterborne hazard,a model for the site selection of emergency facilities considering the rescue congestion of waterborne hazard was constructed based on the maximum probability coverage model,and an algorithm for local improvement of artificial bee colony algorithm using conjugate gradient method was proposed.The model was solved,and the solution results were verified by comparing with the ALNS algorithm on public datasets in terms of arithmetic cases.The results show that the computational results of the improved artificial bee colony algorithm are basically close to the benchmark value,and its convergence speed is significantly faster than the standard convergence time of the ALNS algorithm,which proves the scientific validity and effectiveness of the improved artificial bee colony algorithm.Meanwhile,the convergence speed of the improved artificial bee colony algorithm is significantly better than that of the ALNS algorithm when dealing with the maximum probability coverage model considering the congestion situation.The research results can provide reference for the waterborne emergency rescue network planning and multi-objective facility siting optimization under congested environment.

参考文献/References:

[1]宋英华,高晓茜,霍非舟,等.考虑洪涝灾害风险的城市应急避难场所选址研究[J].中国安全生产科学技术,2022,18(6):31-37. SONG Yinghua,GAO Xiaoqian,HUO Feizhou,et al.Research on site selection of urban emergency shelters considering flood disaster risk[J].Journal of Safety Science and Technology,2022,18(6):31-37.
[2]CHURCH R,REVELLE C.The maximal covering location problem [J].Papers of the Regional Science Association,1974,32(1):101-118.
[3]MARIANOV V,SERRA D.Probabilistic,maximal covering location—allocation models for congested systems[J].Journal of Regional Science,1998,38(3):401-424.
[4]STANOJEVIC' P,MIROSLAV M,ZORICA S.A hybridization of an evolutionary algorithm and a parallel branch and bound for solving the capacitated single allocation hub location problem[J].Applied Soft Computing,2015,33:24-36.
[5]CAPELLE T,CORTS E C,GENDREAU M,et al.A column generation approach for location-routing problems with pickup and delivery[J].European Journal of Operational Research,2018,272(1):121-131.
[6]JIA H Z,ORDEZ F,DESSOUKY M M.Solution approaches for facility location of medical supplies for large-scale emergencies[J].Computers & Industrial Engineering,2006,52(2):257-276.
[7]NARCS C,MARTA F,MOISS S.Coverage area maximization with parallel simulated annealing[J].Expert Systems with Applications,2022,202:117185.
[8]OZBAYGIN G,YAMAN H,KARASAN E O.Time constrained maximal covering salesman problem with weighted demands and partial coverage[J].Computers and Operations Research,2016,76:226-237.
[9]BAGHERINEJAD J,BASHIRI M,NIKZAD H.General form of a cooperative gradual maximal covering location problem[J].Journal of Industrial Engineering International,2018,14(2):241-253.
[10]葛春景,王霞,关贤军.重大突发事件应急设施多重覆盖选址模型及算法[J].运筹与管理,2011,20(5):50-56. GE Chunjing,WANG Xia,GUAN Xianjun.Multi-coverage location model and algorithm for emergency facilities in major emergencies[J].Operations Research and Management Science,2011,20(5):50-56.
[11]赵仁辉,杨丽娜,邵静.一种基于改进蚁群算法与GIS的多约束配送中心选址方法[J].地球信息科学学报,2015,17(2):172-177. ZHAO Renhui,YANG Li’na,SHAO Jing.A multi-constraint distribution center location method based on improved ant colony algorithm and GIS[J].Geo-Information Science,2015,17(2):172-177.
[12]万程鹏,刘翼飞,吴兵,等.基于复杂网络的水上交通风险辨识及事故演化机理研究[J].中国安全生产科学技术,2023,19(8):165-171. WAN Chengpeng,LIU Yifei,WU Bing,et al.Research on risk identification and accident evolution mechanism in waterborne traffic based on complex network[J].Journal of Safety Science and Technology,2023,19(8):165-171.
[13]姚天慧.Z地洪水应急避难所多重覆盖动态选址问题研究[D].北京:北京交通大学,2021.
[14]贺思云,高建瓴,陈岚.基于改进人工蜂群算法的k-means聚类算法[J].贵州大学学报(自然科学版),2017,34(5):83-87,99. HE Siyun,GAO Jianling,CHEN Lan.K-means clustering algorithm based on improved artificial bee colony algorithm[J].Journal of Guizhou University (Natural Science Edition),2017,34(5):83-87,99.
[15]ZHAO M,LIU S,WANG S.Artificial bee colony algorithm with population reduction strategy[C].International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT).IEEE,2023:1-6.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2024-09-19
* 基金项目: 安徽省交通运输重点科技项目(2021-KJQD-019)
作者简介: 王金强,硕士研究生,主要研究方向为工程管理。
通信作者: 林威,硕士,主要研究方向为工程管理。
更新日期/Last Update: 2025-04-28