|本期目录/Table of Contents|

[1]刘小军,朱芮,王东亚,等.冻融循环下MICP固化风积砂的性能劣化试验研究*[J].中国安全生产科学技术,2025,21(4):71-78.[doi:10.11731/j.issn.1673-193x.2025.04.010]
 LIU Xiaojun,ZHU Rui,WANG Dongya,et al.Experimental study on performance deterioration of MICP-cured aeolian sand under freeze-thaw cycles[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2025,21(4):71-78.[doi:10.11731/j.issn.1673-193x.2025.04.010]
点击复制

冻融循环下MICP固化风积砂的性能劣化试验研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
21
期数:
2025年4期
页码:
71-78
栏目:
职业安全卫生管理与技术
出版日期:
2025-04-30

文章信息/Info

Title:
Experimental study on performance deterioration of MICP-cured aeolian sand under freeze-thaw cycles
文章编号:
1673-193X(2025)-04-0071-08
作者:
刘小军朱芮王东亚孙跃
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055;
2.陕西省岩土与地下空间工程重点实验室,陕西 西安 710055)
Author(s):
LIU Xiaojun ZHU Rui WANG Dongya SUN Yue
(1.School of Civil Engineering,Xi’an University of Architecture and Technology,Xi’an Shaanxi 710055,China;
2.Key Laboratory of Geotechnical and Underground Space Engineering of Shaanxi Province,Xi’an Shaanxi 710055,China)
关键词:
冻融循环MICP力学试验劣化机理
Keywords:
freeze-thaw cycle microbial induced calcium carbonate precipitation (MICP) mechanical testing deterioration mechanism
分类号:
X947
DOI:
10.11731/j.issn.1673-193x.2025.04.010
文献标志码:
A
摘要:
为了探究微生物诱导碳酸钙沉淀技术(microbial induced calcium carbonate precipitation,MICP)固化风积砂在冻融循环影响下的劣化机理,在微生物加筋联合糖钙固化风积砂的基础上对加固试样进行冻融循环试验,通过分析质量损失、无侧限抗压强度、压汞试验及微观试验,分析冻融循环对微生物固化风积砂的劣化机理。研究结果表明:加固试样在冻融循环过程中,表面剥蚀情况加剧,出现蜂窝、麻面等劣化情况;质量损失率在10次循环后开始收敛;试样强度随着循环次数增加先减小后收敛,到20次时降至最低;试样孔隙随着循环次数增加逐渐增大,整体性能下降;在低次数冻融循环中,主要影响胶结较差的砂颗粒间的碳酸钙晶体,高次数循环后试样表面变光滑,碳酸钙晶体流失,导致颗粒联结减弱,试样强度和整体性能下降。研究结果可为MICP加筋联合糖钙固化风积砂更好地应用到实际工程中提供指导。
Abstract:
To investigate the deterioration mechanism of microbial induced calcium carbonate precipitation (MICP) cured aeolian sand under freeze-thaw cycles,the freeze-thaw cycle tests were conducted on the reinforced specimens based on the microbial reinforcement combined with sugar calcium cured aeolian sand.By analyzing the mass loss,unconfined compressive strength,mercury intrusion test and microscopic test,the deterioration mechanism of freeze-thaw cycle on the MICP-cured aeolian sand was analyzed.The results show that during freeze-thaw cycles,the surface erosion of cured specimens intensifies,exhibiting the deterioration features such as honeycombs and pitted surfaces.The mass loss rate begins to converge after 10 cycles.The specimen strength initially decreases with the increasing cycles and then converges,reaching its minimum at 20 cycles.The pore size gradually increases with the increasing cycles,and the overall performance decreases.At the lower number of freeze-thaw cycles,the primary damage occurs in poorly cemented calcium carbonate crystals between sand particles.After the cycles with higher number,the specimen surface becomes smoother with the loss of calcium carbonate crystals,weakening the interparticle bonding and further reducing the specimen strength and overall performance.The research results can provide guidance for the practical application of MICP-reinforced sucrose-calcium cured aeolian sand in engineering projects.

参考文献/References:

[1]邓亚虹,李喜安,王治军,等.毛乌素沙漠风积砂动强度特性试验研究[J].工程力学,2012,29(12):281-286. DENG Yahong,LI Xi’an,WANG Zhijun,et al.Experimental study on dynamic strength characteristics of Mu Us Sandyland Aeolian sand[J].Engineering Mechanics,2012,29(12):281-286.
[2]刘松玉,周建,章定文,等.地基处理技术进展[J].土木工程学报,2020,53(4):93-110. LIU Songyu,ZHOU Jian,ZHANG Dingwen,et al.Advances in foundation treatment technology[J].China Civil Engineering Journal,2020,53(4):93-110.
[3]陈泰徐,李剑武,陈筠,等.碱处理风积砂物理力学试验及加固机理研究[J].人民长江,2024,55(11):229-236. CHEN Taixu,LI Jianwu,CHEN Jun,et al.Study on physical and mechanical tests and reinforcement mechanism of aeolian sand treated with alkali[J].Yangtze River,2024,55(11): 229-236.
[4]张向东,徐跃博,任昆,等.碱矿渣改良风积砂强度及抗侵蚀性能研究[J].非金属矿,2021,44(1):30-32. ZHANG Xiangdong,XU Yuebo,REN Kun,et al.Study on strength and erosion resistance of aeolian sand improved by alkali slag[J].Non-Metallic Mines,2021,44(1):30-32.
[5]张向东,李军,孙琦,等.水泥改良风积砂负温动力性能与流变特征研究[J].岩土力学,2018,39(12):4395-4403,4412. ZHANG Xiangdong,LI Jun,SUN Qi,et al.Study on negative temperature dynamic properties and rheological characteristics of cement-modified aeolian sand[J].Rock and Soil Mechanics,2018,39(12):4395-4403,4412.
[6]牛军贤,董忠级,张吉宏.粉煤灰改良风积沙压实性能试验研究[J].工程勘察,2022,50(2):21-25,45. NIU Junxian,DONG Zhongji,ZHANG Jihong.Experimental study on compaction performance of aeolian sand improved by fly ash[J].Geotechnical Investigation & Surveying,2022,50(2):21-25,45.
[7]潘力,许健,巩转定,等.粉土改性风积沙作为堤坝填筑料的击实和剪切特性的研究[J].水利水电技术(中英文),2023,54(5):187-195. PAN Li,XU Jian,GONG Zhuanding,et al.Study on compaction and shear properties of silt modified aeolian sand as embankment filling material[J].Water Resources and Hydropower Engineering,2023,54(5):187-195.
[8]刘浩,唐朝生,吕超,等.砂颗粒矿物成分对MICP过程的影响及机理[J].岩土工程学报,2024,46(9):1956-1964. LIU Hao,TANG Chaosheng,LYU Chao,et al.Influence and mechanism of sand particle mineral composition on the MICP process[J].Chinese Journal of Geotechnical Engineering,2024,46(9): 1956-1964.
[9]SEUNGHUN B,TAEHYUK K.Reductions inhydraulic conductivity of sands caused by microbially induced calcium carbonate precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2024,150(2):117601.
[10]张成志.微生物诱导碳酸钙技术在包头砂土地层加固及渗透性改良方面的研究[D].包头:内蒙古科技大学,2023.
[11]FENG K,MONTOYA B M.Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J].Journal of Geotechnical and Geoenvironmental Engineering,2016,142(1):04015057.
[12]CUI M J,ZHENG J J,ZHANG R J,et al.Influence of cementation level on the strength behaviour of bio-cemented sand[J].Acta Geotechnica,2017,12(5):971-986.
[13]MONTOYA B.M,DEJONG J T.Stress-strain behavior of sands cemented by microbially induced calcite precipitation[J].Journal of Geotechnical & Geoenvironmental Engineering,2015,141(6):1-10.
[14]刘小军,郜鑫,潘超钒.MICP固化土遗址裂隙的剪切强度试验研究[J].土木工程学报2022,55(4):88-94,108. LIU Xiaojun,GAO Xin,PAN Chaofan.Experimental study on shear strength of cracks in MICP solidified soil sites[J].China Civil Engineering Journal 2022,55(4):88-94,108.
[15]孙潇昊,缪林昌,童天志,等.微生物沉积碳酸钙固化砂土试验研究[J].岩土力学,2017,38(11):3225-3230,3239. SUN Xiaohao,MIAO Linchang,TONG Tianzhi,et al.Experimental study on solidification of sandy soil by microbial deposition of calcium carbonate[J].Rock and Soil Mechanics,2017,38(11):3225-3230,3239.
[16]董博文,刘士雨,俞缙,等.基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J].岩土力学,2021,42(4):1104-1114. DONG Bowen,LIU Shiyu,YU Jin,et al.Effect evaluation of calcium sand reinforced by natural seawater based on microbe-induced calcium carbonate precipitation[J].Rock and Soil Mechanics,2021,42(4):1104-1114.
[17]中华人民共和国住房和城乡建设部.土工试验方法标准:GB/T 50123—2019[S].北京:中国计划出版社,2019.
[18]中国建筑材料联合会.建设用砂:GB/T 14684—2022[S].北京:中国标准出版社,2022.
[19]中华人民共和国交通运输部.公路路基施工技术规范:JTG/T 3610—2019[S].北京:人民交通出版社,2019.

相似文献/References:

[1]张科,叶锦明,刘享华.冻融循环作用下受荷砂岩的能量演化与破碎分形特征*[J].中国安全生产科学技术,2021,17(8):111.[doi:10.11731/j.issn.1673-193x.2021.08.017]
 ZHANG Ke,YE Jinming,LIU Xianghua.Energy evolution and fractured fractal characteristics of loaded sandstone under freeze-thaw cycles[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(4):111.[doi:10.11731/j.issn.1673-193x.2021.08.017]
[2]李钢.高寒地区露天矿排土场稳定性分析研究*[J].中国安全生产科学技术,2021,17(10):72.[doi:10.11731/j.issn.1673-193x.2021.10.011]
 LI Gang.Study on stability analysis of waste dump of open-pit mine in alpine area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(4):72.[doi:10.11731/j.issn.1673-193x.2021.10.011]
[3]张淑坤,王来贵,唐楠楠.化学腐蚀-冻融条件下加载岩石能量演化规律及耗散模型研究*[J].中国安全生产科学技术,2022,18(6):148.[doi:10.11731/j.issn.1673-193x.2022.06.022]
 ZHANG Shukun,WANG Laigui,TANG Nannan.Study on energy evolution law and dissipation model of loaded rock under chemical corrosion and freeze-thaw conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(4):148.[doi:10.11731/j.issn.1673-193x.2022.06.022]
[4]卫梦希,李庆文,郭红臣,等.冻融影响下不同岩性岩石物理力学特性试验研究*[J].中国安全生产科学技术,2023,19(1):41.[doi:10.11731/j.issn.1673-193x.2023.01.006]
 WEI Mengxi,LI Qingwen,GUO Hongchen,et al.Experimental study on physical and mechanical properties of rocks with different lithology under influence of freeze-thaw[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(4):41.[doi:10.11731/j.issn.1673-193x.2023.01.006]
[5]王中文,徐颖,谢守冬,等.岩石冻融损伤细观特征数值模拟研究*[J].中国安全生产科学技术,2023,19(11):143.[doi:10.11731/j.issn.1673-193x.2023.11.020]
 WANG Zhongwen,XU Ying,XIE Shoudong,et al.Numerical simulation study on mesoscopic characteristics of rock freeze-thaw damage[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(4):143.[doi:10.11731/j.issn.1673-193x.2023.11.020]

备注/Memo

备注/Memo:
收稿日期: 2024-10-18
* 基金项目: 陕西省自然科学基础研究计划项目(2020JM-483)
作者简介: 刘小军,博士,副教授,主要研究方向为岩土及地下工程。
更新日期/Last Update: 2025-04-28