[1]ZHANG Y,ZHOU J.A trainable method for extracting Chinese entity names and their relations[C]//Second Chinese Language Processing Workshop.2000:66-72.
[2]俞鸿魁,张华平,刘群,等.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94.
YU Hongkui,ZHANG Huaping,LIU Qun,et al.Chinese named entity identification using cascaded hidden Markov model [J].Journal of Communications,2006,27(2):87-94.
[3]王红,祝寒,林海舟.航空安全事故因果关系抽取方法的研究[J].计算机工程与应用,2020,56(11):265-270.
WANG Hong,ZHU Han,LIN Haizhou.Research on causality extraction of civil aviation accident[J].Computer Engineering and Applications,2020,56(11):265-270.
[4]罗凌,杨志豪,宋雅文,等.基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究[J].计算机学报,2020,43(10):1943-1957.
LUO Ling,YANG Zhihao,SONG Yanwen,et al.Chinese clinical named entity recognition based on stroke ELMo and multi-task learning [J].Chinese Journal of Computers,2020,43(10):1943-1957.
[5]QIN Y,SHEN G,ZHAO W,et al.A network security entity recognition method based on feature template and CNN-BiLSTM-CRF[J].Frontiers of Information Technology & Electronic Engineering,2019,20(6):872-884.
[6]郑立瑞,肖晓霞,邹北骥,等.基于BERT的电子病历命名实体识别[J].计算机与现代化,2024,(1):87-91.
ZHENG Lirui,XIAO Xiaoxia,ZOU Beiji,et al.Named entity recognition in electronic medical record based on BERT [J].Computer and Modernization,2024,(1):87-91.
[7]余丹丹,黄洁,党同心,等.基于ALBERT的中文简历命名实体识别[J].计算机工程与设计,2024,45(1):261-267.
YU Dandan,HUANG Jie,DANG Tongxin,et al.Recognition of named entity in Chinese resume based on ALBERT [J].Computer Engineering and Design,2024,45(1):261-267.
[8]王明达,张榜,吴志生,等.基于强化学习的城镇燃气事故信息抽取方法[J].中国安全生产科学技术,2023,19(3):39-45.
WANG Mingda,ZHANG Bang,WU Zhisheng,et al.Information extraction method of urban gas accidents based on reinforcement learning[J].Journal of Safety Science and Technology,2023,19(3):39-45.
[9]杨柳.基于文本数据的轨道交通事故致因分析及风险研究[D].北京交通大学,2021.
[10]LI X,SHI T,LI P,et al.BiLSTM-CRF model for named entity recognition in railway accident and fault analysis report[C]//Proceedings of the Asia-Pacific Conference on Intelligent Medical 2018 & International Conference on Transportation and Traffic Engineering 2018.2018:1-5.
[11]QIN Y,ZENG Y.Research of clinical named entity recognition based on Bi-LSTM-CRF[J].Journal of Shanghai Jiao Tong University (Science),2018,23(3):392-397.
[12]关斯琪,董婷婷,万子敬,等.基于BERT-CRF模型的火灾事故案例实体识别研究[J].消防科学与技术,2023,42(11):1529-1534.
GUAN Siqi,DONG Tingting,WAN Zijing,et al.Fire accident case named entity recognition based on BERT-CRF model[J].Fire Science and Technology,2023,42(11):1529-1534.
[13]WANG S H,SUN X F,LI X Y,et al.GPT-NER:named entity recognition via large language models[EB/OL].(2023-10-07)[2025-01-17].https://arxiv.org/abs/2304.10428.
[14]MEONI S,DE LA CLERGERIE E,RYFFEL T.Large language models as instructors:a study on multilingual clinical entity extraction[C]//The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks.2023:178-190.
[15]ASKOK D,LIPTON Z C.PromptNER: prompting for fewshot named entity recognition[EB/OL].(2023-06-20)[2025-01-17].https://arxiv.org/abs/2305.15444.
[16]WEI J,ZOU K.EDA:easy data augmentation techniques for boosting performance on text classification tasks[EB/OL].(2019-08-25)[2025-01-17].https://arxiv.org/abs/1901.11196.
[17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Long Beach:ACM,2017:6000-6010.
[18]ABDIN M,ANEJA J,AWADALLA H,et al.Phi-3 technical report:a highly capable language model locally on your phone[EB/OL].(2024-08-30)[2025-01-17].https://arxiv.org/abs/2404.14219.
[19]OOUYANG L,WU J,JIANG X,et al.Training language models to follow instructions with human feedback[J].Advances In Neural Information Processing Systems,2022,35: 27730-27744.
[20]HOULSBY N,GIURGIU A,JASTRZEBSKI S,et al.Parameter-efficient transfer learning for NLP[C]//International conference on machine learning.PMLR,2019:2790-2799.
[21]LI X L,LIANG P.Prefix-tuning:optimizing continuous prompts for generation[EB/OL].(2021-01-01)[2025-01-17].https://arxiv.org/abs/2101.00190.
[22]HU E J,SHEN Y,WALLIS P,et al.Lora:low-rank adaptation of large language models[EB/OL].(2021-10-16)[2025-01-17].https://arxiv.org/abs/2106.09685.
[23]LIU X,JI K,FU Y,et al.P-tuning v2:prompt tuning can be comparable to fine-tuning universally across scales and tasks[EB/OL].(2022-03-15)[2025-01-17].https://arxiv.org/abs/2110.07602.
[24]广州市南沙区人民政府.南沙区“8·3”燃气管道泄漏起火一般事故调查报告[EB/OL].(2022-04-21)[2025-01-17].https://www.gzns.gov.cn/zwgk/zdlyxxgk/aqsc/sgdcbgxx/content/post_8179818.html.
[1]牛飞,钟少波,刘楠,等.一种改进的灾害新闻3要素提取方法研究*[J].中国安全生产科学技术,2023,19(2):13.[doi:10.11731/j.issn.1673-193x.2023.02.002]
NIU Fei,ZHONG Shaobo,LIU Nan,et al.Research on an improved extraction method for three elements of disaster news[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):13.[doi:10.11731/j.issn.1673-193x.2023.02.002]
[2]王明达,张榜,吴志生,等.基于强化学习的城镇燃气事故信息抽取方法[J].中国安全生产科学技术,2023,19(3):39.[doi:10.11731/j.issn.1673-193x.2023.03.006]
WANG Mingda,ZHANG Bang,WU Zhisheng,et al.Information extraction method of urban gas accidents based on reinforcement learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):39.[doi:10.11731/j.issn.1673-193x.2023.03.006]
[3]成全,张双宝.基于深度学习的特征增强式安全事故文本实体识别模型研究*[J].中国安全生产科学技术,2024,20(6):58.[doi:10.11731/j.issn.1673-193x.2024.06.008]
CHENG Quan,ZHANG Shuangbao.Research on feature-enhanced model for entity recognition of safety accident text based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(2):58.[doi:10.11731/j.issn.1673-193x.2024.06.008]