|本期目录/Table of Contents|

[1]史君林,冯少波,明传中,等.油气井斜承载台阶面强度研究*——以万米超深井超重送入钻杆45°台阶面为例[J].中国安全生产科学技术,2024,20(10):36-45.[doi:10.11731/j.issn.1673-193x.2024.10.005]
 SHI Junlin,FENG Shaobo,MING Chuanzhong,et al.Study on strength of inclined bearing step surface of oil and gas wells:taking 45° step surface of super-heavy landing string in ultra-deep well of ten thousand meters as example[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(10):36-45.[doi:10.11731/j.issn.1673-193x.2024.10.005]
点击复制

油气井斜承载台阶面强度研究*——以万米超深井超重送入钻杆45°台阶面为例
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年10期
页码:
36-45
栏目:
学术论著
出版日期:
2024-10-30

文章信息/Info

Title:
Study on strength of inclined bearing step surface of oil and gas wells:taking 45° step surface of super-heavy landing string in ultra-deep well of ten thousand meters as example
文章编号:
1673-193X(2024)-10-0036-10
作者:
史君林冯少波明传中练章华万智勇张强
(1.四川轻化工大学 机械工程学院,四川 宜宾 644000;
2.西南石油大学 油气藏地质及开发工程全国重点实验室,四川 成都 610500;
3.中国石油塔里木油田公司,新疆库尔勒 841000)
Author(s):
SHI Junlin FENG Shaobo MING Chuanzhong LIAN Zhanghua WAN Zhiyong ZHANG Qiang
(1.School of Mechanical Engineering,Sichuan University of Science & Engineering,Yibin Sichuan 644000,China;
2.National Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu Sichuan 610500,China;
3.PetroChina Tarim Oilfield Company,Korla Xinjiang 841000,China)
关键词:
超深万米井承载斜台阶送入钻杆弹塑性分析极限载荷
Keywords:
ultra-deep well of ten thousand meters bearing inclined step landing string elastoplastic analysis ultimate load
分类号:
X937;TE931
DOI:
10.11731/j.issn.1673-193x.2024.10.005
文献标志码:
A
摘要:
为应对钻探深度增加带来的井口设备超重载荷挑战,解决超重载荷承载台阶设计校核缺乏统一标准等问题,开展对承载台阶强度的研究。首先,建立考虑摩擦力的斜面台阶力学模型,提出承载台阶剪切失效模型下的计算公式,并对不同设计准则、安全系数和标准下的结果进行对比分析。然后,以万米超深井超重尾管设计的新型带45°斜坡的送入钻杆为例,结合理论分析与弹塑性非线性有限元,进行多种方法求解极限载荷研究,得到轴向的许用载荷和极限载荷,并对钻杆台阶面进行局部应变等评价。研究结果表明:所提出剪切失效公式可用于斜面台阶承载极限载荷计算,建议采用ASME BPVC Ⅷ-3规定的弹塑性方法进行精细分析,载荷系数取1.8计算许用极限载荷。研究结果为油气井行业中井口设备承载的斜台阶设计与计算提供理论基础与参考。
Abstract:
To address the challenges of super-heavy loads on wellhead equipment due to increased drilling depths and the lack of unified standards for the design and verification of bearing steps under super-heavy loads,the strength of bearing steps was studied.A mechanical model of inclined step considering friction was established,then the calculation formula under the shear failure model of bearing step was proposed,and different design criteria,safety factors and standards were compared and analyzed.Taking the newly landing string with 45° inclined slope designed for super-heavy tail pipes in ultra-deep well of ten thousand meters as an example,combined with the theoretical analysis and elastoplastic nonlinear finite element,multiple methods were used to solve the ultimate load.The axial allowable load and ultimate load were obtained,and the local strain of the drill pipe step surface was evaluated comprehensively.The results show that the shear failure formula proposed in this paper can be used to calculate the ultimate load of inclined slope step.It is recommended to use the elastoplastic method specified in ASME Ⅷ-3 for fine analysis,and the load coefficient should be taken as 1.8 to calculate the allowable ultimate load.The research results can provide theoretical basis and reference for the design and calculation of inclined steps bearing by wellhead equipment in oil and gas well industry.

参考文献/References:

[1]吴裕根,娄钰,门相勇.油气是保障中国能源安全的重要基础[J].世界石油工业,2022,29(6):19-25. WU Yugen,LOU Yu,MEN Xiangyong.Oil and gas providing foundation for energy security in China[J].World Petroleum Industry,2022,29(6):19-25.
[2]贾承造,王祖纲,姜林,等.中国油气勘探开发成就与未来潜力:深层、深水与非常规油气——专访中国科学院院士、石油地质与构造地质学家贾承造[J].世界石油工业,2023,30(3):1-8. JIA Chengzao,WANG Zugang,JIANG Lin,et al.Achievements and future potential for oil&gas exploration and development in China:deep-formation,deep-water and unconventional reservoirs—interview with JIA Chengzao,academician of the CAS,geologist in petroleum geology and structure[J].World Petroleum Industry,2023,30(3):1-8.
[3]王春生,冯少波,张志,等.深地塔科1井钻井设计关键技术[J].石油钻探技术,2024,52(2):78-86. WANG Chunsheng,FENG Shaobo,ZHANG Zhi,et al.Key technologies for drilling design of Deep Taco 1 Well [J].Petroleum Drilling Technology,2024,52(2):78-86.
[4]张锐尧,宋亚港.深水钻井井筒压力预测与控制方法研究进展[J].世界石油工业,2024,31(2):74-82. ZHANG Ruiyao,SONG Yagang.Research progress in wellbore pressure prediction and control methods for deep water drilling[J].World Petroleum Industry,2024,31(2):74-82.
[5]孙金声,刘伟,王庆,等.万米超深层油气钻完井关键技术面临挑战与发展展望[J].钻采工艺,2024,47(2):1-9. SUN Jinsheng,LIU Wei,WANG Qing,et al.Challenges and development prospects of oil and gas drilling and completion in myriametric deep formation in China [J].Drilling and Production Technology,2024,47(2):1-9.
[6]柳庆仁,张富强,吕维平,等.连续管技术与装备在深层页岩气开发中的浅析[J].世界石油工业,2024,31(1):61-69. LIU Qingren,ZHANG Fuqiang,LYU Weiping,et al.Analysis of coiled tubing technology and equipment in deep shale gas development[J].World Petroleum Industry,2024,31(1):61-69.
[7]张运东,方辉,刘帅奇,等.深地油气勘探开发技术发展现状与趋势[J].世界石油工业,2023,30(6):12-20. ZHANG Yundong,FANG Hui,LIU Shuaiqi,et al.Process and development direction of deep oil and gas exploration and development[J].World Petroleum Industry,2023,30(6):12-20.
[8]张毅,袁鹏斌,高连新.油井管失效分析[M].北京:石油工业出版社,2015.
[9]黄熠,李勇,张崇,等.深水采油树井口连接器结构分析与测试验证[J].船舶工程,2023,45(11):156-163. HUANG Yi,LI Yong,ZHANG Chong,et al.Deepwater X-Tree Wellhead connector structural analysis and validation testing [J].Ship Engineering,2023,45(11):156-163.
[10]练章华,万智勇,吴彦先,等.超深井卡瓦悬挂器套管力学强度有限元分析[J].石油机械,2023,51(9):1-8. LIAN Zhanghua,WAN Zhiyong,WU Yanxian,et al.Finite element analysis on mechanical strength of casing at slip hanger in ultra-deep wells [J].China Petroleum Machinery,2023,51(9):1-8.
[11]刘洋,练章华,张杰,等.大通径芯轴式悬挂器金属密封结构研究 [J].润滑与密封,2022,47(4):124-131. LIU Yang,LIAN Zhanghua,ZHANG Jie,et al.Research on metal seal structure of large diameter mandrel hanger[J].Lubrication Engineering,2022,47(4):124-131.
[12]张智,王博,刘和兴,等.南海某深水高温高压气井SS-15型井口头系统薄弱点安全评价[J].中国安全生产科学技术,2023,19(4):107-113. ZHANG Zhi,WANG Bo,LIU Hexing,et al.Safety evaluation on weak points of SS-15 wellhead system in a deep water high temperature and high pressure gas well in South China Sea [J].Journal of Safety Science and Technology,2023,19(4):107 -113.
[13]谭伟雄,谭忠健,张志虎,等.渤中凹陷深层油气勘探录井技术进展及展望[J].世界石油工业,2023,30(4):40-47. TAN Weixiong,TAN Zhongjian,ZHANG Zhihu,et al.Progress and prospects of mud logging in deep oil & gas exploration in Bozhong Sag[J].World Petroleum Industry,2023,30(4):40-47.
[14]American Petroleum Institute.Specification for wellhead and tree equipment:API Spec 6A [S].Washington:API,2018.
[15]PLESSIS G J,VERHOEF R,RINGSTAD S I,et al.Landing string:breaking the 2.5 million pounds limit[C]//SPE/IADC Drilling Conference and Exhibition.Texas,2016.
[16]VERHOEF R,RIJZINGEN H.Tested and confirmed:the 1250-ton slip-proof landing string and slip system[C]//SPE/IADC Drilling Conference and Exhibition.London,2015.
[17]BORDET L,FRANCHI J,GRANGER S,et al.Innovative forging process allows safer and cost effective heavy duty landing string for deepwater applications[C]//SPE Deepwater Drilling and Completions Conference.Texas,2016.
[18]胡强,王维明,谢友鸽,等.泥线悬挂器力学分析与试验研究[J].石油矿场机械,2019,48(1):8-16. HU Qiang,WANG Weiming,XIE Youge,et al.Numerical study and performance validation test of the Mud-line Casing Hanger[J].Petroleum Mining Machinery,2019,48(1):8-16.
[19]Boiler and Pressure Vessel Committee on Pressure Vessels.Rules for construction of nuclear facility components division 1-subsection NF supports:ASME BPVC Ⅲ-1-NF[S].New York:ASME,2023.
[20]Boiler and Pressure Vessel Committee on Pressure Vessels.Rules for construction of pressure vessels division 1:ASME BPVC Ⅷ-1[S].New York:ASME,2023.
[21]Boiler and Pressure Vessel Committee on Pressure Vessels.Rules for construction of pressure vessels division 2 alternative rules construction of high pressure Vessels:ASME BPVC Ⅷ-2[S].New York:ASME,2023.
[22]PETERS D T,MCKIE N R.Design and verification of high load bearing interfaces[C]//Offshore Technology Conference.Houston,2013.
[23]MCKIE N R,PETERS D T,TOOLEY K A.Deep well drilling applications[C]//Pressure Vessels and Piping Conference Conference.American Society of Mechanical Engineers.Paris,2013.
[24]Boiler and Pressure Vessel Committee on Pressure Vessels.Rules for construction of pressure vessels division 3 alternative rules for construction of high pressure vessels:ASME BPVC Ⅷ-3[S].New York:ASME,2023.
[25]PATHAK P D,TAYLOR S L.Design method and LRFD for HPHT subsea equipment for extreme and survival load conditions[C]//Offshore Technology Conference.Houston,2014.
[26]KARPANAN K,THOMAS W.Local failure analysis of HPHT subsea tree components due to Triaxial Stress[C]//Pressure Vessels and Piping Conference.American Society of Mechanical Engineers.Paris,2014.
[27]李建国.压力容器设计的力学基础及其标准应用 [M].北京:机械工业出版社,2004.
[28]SNOW S D,MORTON D K,PLEINS E L,et al.Strain-based acceptance criteria for energy-limited events[C]//ASME Pressure Vessels and Piping Conference.Prague,2009.
[29]罗翔鹏,李正驰,段成红,等.基于弹塑性分析的局部过度应变评定方法及其应用[J].压力容器,2023,40(6):33-39. LUO Xiangpeng,LI Zhengchi,DUAN Chenghong,et al.Local excessive strain assessment method based on elastic-plastic analysis and its application [J].Pressure Vessel Technology,2023,40(6):33-39.
[30]全国锅炉压力容器标准化技术委员会.钢制压力容器——分析设计标准:JB 4732—1995 [S].北京:中国机械工业出版社,1995.
[31]American Petroleum Institute.High-pressure high-temperature design guidelines:API TR 17TR8 [S].Washington:API,2022.
[32]LINDLEY R A,AIKEN W B,MIGLIN B P.Evaluation of pressure rating methods recommended by API RP 17TR8 final report with peer review responses:ANL-17/10[R].Department of the Interior,Bureau of Safety and Environmental Enforcement.Houston,2018.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2024-02-20
* 基金项目: 国家自然科学基金项目(52204015);四川省自然科学基金项目(2023NSFSC0920);四川轻化工大学科研创新团队计划项目(SUSE652A004)
作者简介: 史君林,博士研究生,讲师,主要研究方向为油气井工程力学。
更新日期/Last Update: 2024-10-31