|本期目录/Table of Contents|

[1]何灵欣,张佳庆,刘睿,等.特高压换流站消防机器人长距离输送压缩空气泡沫有效性研究*[J].中国安全生产科学技术,2024,20(8):150-157.[doi:10.11731/j.issn.1673-193x.2024.08.020]
 HE Lingxin,ZHANG Jiaqing,LIU Rui,et al.Study on effectiveness of long-distance compressed air foam delivery by firefighting robots at ultra-high voltage converter stations[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(8):150-157.[doi:10.11731/j.issn.1673-193x.2024.08.020]
点击复制

特高压换流站消防机器人长距离输送压缩空气泡沫有效性研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年8期
页码:
150-157
栏目:
职业安全卫生管理与技术
出版日期:
2024-08-30

文章信息/Info

Title:
Study on effectiveness of long-distance compressed air foam delivery by firefighting robots at ultra-high voltage converter stations
文章编号:
1673-193X(2024)-08-0150-08
作者:
何灵欣张佳庆刘睿季陈鹏郭文文
(1.国网安徽省电力有限公司电力科学研究院,安徽 合肥 230601;
2.江南大学 纺织科学与工程学院,江苏 无锡 214122)
Author(s):
HE Lingxin ZHANG Jiaqing LIU Rui JI Chenpeng GUO Wenwen
(1.Power Science Research Institute of State Grid Anhui Electric Power Co.,Hefei Anhui 230601,China;
2.College of Textile Science and Engineering,Jiangnan University,Wuxi Jiangsu 214122,China)
关键词:
泡沫多相流非牛顿流体数值模拟接驳口
Keywords:
foam multiphase flow non-Newtonian fluid numerical simulation connection port
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2024.08.020
文献标志码:
A
摘要:
为厘清压缩空气泡沫从产生装置运输至举高消防机器人过程中的可靠性,选用Fluent模拟软件对压缩空气泡沫在管道内的压降进行数值模拟研究。研究结果表明:在气液比6∶1~10∶1范围内,压缩空气泡沫在长距离运输过程中的压降随着气液比的增大而增大,硬管末端10∶1泡沫的压降可达到6∶1泡沫的1.7倍;在相同气液比混合比、供液流量条件下,硬管段中的压降与运输距离成正相关,运输至315 m处达到最大值166 kPa。接驳口前后存在较大的压降,其压降值大于硬管段输送150 m处的压降,是其1.18倍;软管段中的压降在运输过程中爬升阶段的下降尤为显著。气液比、运输距离、管径及高度变化是影响压缩空气泡沫运输过程中压降变化的主要因素,其中管径和高度的影响尤为显著。研究结果可为举高消防机器人在特高压换流站的应用提供一定的理论参考。
Abstract:
In order to clarify the reliability of transporting the compressed air foam from the generator to the lifting firefighting robot,the Fluent simulation software was used to carry out numerical simulation research on the pressure drop of compressed air foam in the pipeline.The results show that within the range of gas-liquid ratio from 6∶1 to 10∶1,the pressure drop of compressed air foam in the long-distance transportation process increases with the increase of gas-liquid ratio,and the pressure drop of foam in 10∶1 at the end of hard pipe is 1.7 times as much as that of the foam in 6∶1.Under the same air-liquid ratio,mixing ratio,and supply flow rate,the pressure drop in the hard pipe section is positively correlated with the transportation distance,and reaches the maximum value of 166 kPa at the transportation to 315 m.There exists a large pressure drop before and after the connection port,and the value of which is greater than that at the transportation of 150 m in the hard pipe section and is 1.18 times of it.The pressure drop in the hose section is particularly significant during the climbing stage of transportation process.The gas-liquid ratio,transport distance,pipe diameter and height change are the main factors affecting the pressure drop change during the transportation of compressed air foam,and the influence of pipe diameter and height is particularly significant.The research results can provide certain theoretical reference for the application of lifting firefighting robots in extra-high voltage converter stations.

参考文献/References:

[1]ALASSI A,BANALES S,ELLABBAN O,et al.HVDC transmission:technology review,market trends and future outlook[J].Renewable and Sustainable Energy Reviews,2019,112:530-554.
[2]XING J,CHENG J Y,YI D,et al.Reliability equivalence to symmetrical UHVDC transmission systems considering redundant structure configuration[J].Energies,2018,11(4):753.
[3]ZHANG Y,ZHANG W,JI J.Study of a combined surge protective device for a relay protection circuit in a UHV converter station[J].IEEE Access,2020(99):1-1.
[4]潘俊锐,曹俊生.特高压直流换流站消防系统分析[J].电气技术,2014(12):95-97. PAN Junrui,CAO Junsheng.Fire extinguisher system’s analysis of UHVDC converter station[J].Electrical Engineering,2014(12):95-97.
[5]ZHONG B,ZHAO C Z,ZHANG Z J,et al.Strengthening technique on firestop system of valve hall for existing UHVDC converter stations[J].IOP Conference Series:Earth and Environmental Science,2020,461:012036.
[6]BOGUE R.The role of robots in firefighting[J].Industrial Robot,2021,48(2):174-178.
[7]张茂春,徐岳,张伟,等.变电站消防机器人消防介质供给方案设计[J].山东电力技术,2022,49(1):13-17. ZHANG Maochun,XU Yue,ZHANG Wei,et al.Design of supply scheme of fire fighting medium for fire-fighting robot in substation[J].Shandong Electric Power,2022,49(1):13-17.
[8]DHIMAN A,SHAH N,ADHIKARI P,et al.Firefighting robot with deep learning and machine vision[J].Neural Computing and Applications,2021,34(4):2831-2839.
[9]党海昌.消防机器人在我国灭火救援中的应用现状和前景分析[J].消防技术与产品信息,2016(3):69-71. DANG Haichang.Analysis of the current situation and prospect of the application of fire-fighting robots in China’s fire-fighting and rescue[J].Fire Technique and Products Information,2016(3):69-71.
[10]雷蕾,王龙,王明皓.压缩空气泡沫固定管网灭火系统[J].消防技术与产品信息,2007(6):53-55. LEI Lei,WANG Long,WANG Minghao.Compressed air foam fixed pipe network fire extinguishing system[J].Fire Technique and Products Information,2007(6):53-55.
[11]陈旸,陈涛,胡成,等.压缩空气泡沫传输阻力损失研究[J].消防科学与技术,2017,36(10):1418-1420. CHEN Yang,CHEN Tao,HU Cheng,et al.Study on the press drop of the compressed air foam flow transport[J].Fire Science and Technology,2017,36(10):1418-1420.
[12]葛晓霞,高健,赵昊.压缩空气泡沫管内流动特性分析[J].消防科学与技术,2016,35(10):1408-1411. GE Xiaoxia,GAO Jian,ZHAO Hao.Analysis of compressed air foam flow characteristics[J].Fire Science and Technology,2016,35(10):1408-1411.
[13]林全生,张猛,宋波,等.压缩空气A类泡沫在水平管道内流动研究[J].消防科学与技术,2017,36(9):1265-1268. LIN Quansheng,ZHANG Meng,SONG Bo,et al.Research on compressed air foam of class A flow in horizontal pipe by Fluent[J].Fire Science and Technology,2017,36(9):1265-1268.
[14]BLAUER R E,MITCHELL B J,KOHLHAAS C A.Determination of laminar,turbulent,and transitional foam flow losses in pipes[C]// SPE California Regional Meeting,1974.
[15]王勇凯,高红,宋波,等.压缩空气A类泡沫水平管路压降实验及数值模拟[J].化工学报,2018,69(10):4184-4193. WANG Yongkai,GAO Hong,SONG Bo,et al.Experimental study and numerical simulation of laminar flow of compressed air class A foam in horizontal pipe[J].CIESC Journal,2018,69(10):4184-4193.
[16]徐学军.压缩空气泡沫管网输运特性及其在超高层建筑中应用研究[D].合肥:中国科学技术大学,2020.
[17]林全生,高红,宋波.压缩空气泡沫管路输送的模拟计算[J].石油化工,2019,48(2):169-176. LIN Quansheng,GAO Hong,SONG Bo.Flow simulation of compressed air foam pipeline[J].Petrochemical Technology,2019,48(2):169-176.
[18]陈胤昌,陈方,何坤,等.压缩空气泡沫垂直管网输运压力衰减特性数值模拟研究[J].中国安全生产科学技术,2023,19(5):151-156. CHEN Yichang,CHEN Fang,HE Kun,et al.Numerical simulation on pressure attenuation characteristics of compressed air foam in vertical pipe network[J].Journal of Safety Science and Technology,2023,19(5):151-156.
[19]贾绍义,柴诚敬.化工原理[M].北京:高等教育出版社,2013.
[20]张佳庆,黄勇,周亦夫,等.压缩空气泡沫在长距离管路输送中压降的数值模拟[J].火灾科学,2023,32(1):43-49. ZHANG Jiaqing,HUANG Yong,ZHOU Yifu,et al.Numerical simulation of pressure drop of compressed air foam in long-distance pipeline transmission[J].Fire Safety Science,2023,32(1):43-49.
[21]刘金革,陈宇曦,韩焦,等.压缩空气泡沫流动压力降研究[J].天津科技,2022,49(5):47-50. LIU Jin’ge,CHEN Yuxi,HAN Jiao,et al.Research on pressure drop of compressed air foam flow[J].Tianjin Science & Technology,2022,49(5):47-50.
[22]徐林志,何坤,陈胤昌,等.压缩空气泡沫水平管路压力损失数值模拟研究[J].中国安全生产科学技术,2023,19(3):164-170. XU Linzhi,HE Kun,CHEN Yinchang,et al.Numerical simulation study on pressure loss of compressed air foam in horizontal pipeline[J].Journal of Safety Science and Technology,2023,19(3):164-170.
[23]林全生.压缩空气泡沫系统水力计算及优化设计[D].天津:天津大学,2019.

相似文献/References:

[1]李孜军,杨东杰,牛娇,等.溜井泡沫抑尘剂的研制及其抑尘性能实验研究[J].中国安全生产科学技术,2015,11(8):64.[doi:10.11731/j.issn.1673-193x.2015.08.011]
 LI Zi-jun,YANG Dong-jie,NIU Jiao,et al.Experimental study on development of foam dust suppression agent in ore pass and its dust suppression performance[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(8):64.[doi:10.11731/j.issn.1673-193x.2015.08.011]
[2]耿泽昊,王军锋,刘海龙,等.金属粉尘湿法处理系统的设计和除尘效果分析[J].中国安全生产科学技术,2018,14(8):171.[doi:10.11731/j.issn.1673-193x.2018.08.028]
 GENG Zehao,WANG Junfeng,LIU Hailong,et al.Design of wet treatment system for metal dust and analysis on dust removal effect[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):171.[doi:10.11731/j.issn.1673-193x.2018.08.028]
[3]路頔,王丽晶.SK扰流器液氮泡沫发生装置混合换热性能研究*[J].中国安全生产科学技术,2024,20(6):111.[doi:10.11731/j.issn.1673-193x.2024.06.015]
 LU Di,WANG Lijing.Research of mixing and heat transfer performance of liquid nitrogen foam generator with SK spoiler[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(8):111.[doi:10.11731/j.issn.1673-193x.2024.06.015]

备注/Memo

备注/Memo:
收稿日期: 2024-03-11
* 基金项目: 国网安徽省电力有限公司科技项目(52120523000Y)
作者简介: 何灵欣,博士,工程师,主要研究方向为电力系统安全防护材料。
通信作者: 张佳庆,博士,正高级工程师,主要研究方向为电力火灾与安全防护与管理。
更新日期/Last Update: 2024-08-26