|本期目录/Table of Contents|

[1]权晶琴,胡明华,尹嘉男,等.复杂机场场面滑行网络热门“节点-路段”识别*[J].中国安全生产科学技术,2024,20(5):193-201.[doi:10.11731/j.issn.1673-193x.2024.05.026]
 QUAN Jingqin,HU Minghua,YIN Jianan,et al.Identification of hot “node-segment” in surface taxiway network of complex airport[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(5):193-201.[doi:10.11731/j.issn.1673-193x.2024.05.026]
点击复制

复杂机场场面滑行网络热门“节点-路段”识别*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年5期
页码:
193-201
栏目:
职业安全卫生管理与技术
出版日期:
2024-05-31

文章信息/Info

Title:
Identification of hot “node-segment” in surface taxiway network of complex airport
文章编号:
1673-193X(2024)-05-0193-09
作者:
权晶琴胡明华尹嘉男马园园
(1.南京航空航天大学 民航学院,江苏 南京 211106;
2.空中交通管理系统全国重点实验室,江苏 南京 210007)
Author(s):
QUAN Jingqin HU Minghua YIN Jia’nan MA Yuanyuan
(1.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 211106,China;
2.State Key Laboratory of Air Traffic Management System,Nanjing Jiangsu 210007,China)
关键词:
机场场面热门节点热门路段CRITIC法VIKOR算法
Keywords:
airport surface hot node hot segment criteria importance through intercriteria correlation (CRITIC) method Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) algorithm
分类号:
X949
DOI:
10.11731/j.issn.1673-193x.2024.05.026
文献标志码:
A
摘要:
为提升场面运行安全管理水平,统筹考虑路网结构与轨迹数据,研究复杂机场场面滑行网络热门“节点-路段”识别问题。首先,析取并整合场面物理结构特征要素,构建场面滑行网络的原始模型与对偶模型;然后,针对“静态结构”和“动态交通流”2个视角,构建1套场面滑行网络特征指标体系及其具体度量方法,设计基于累计信息贡献率的指标筛选机制;最后,采用CRITIC-VIKOR法对场面滑行网络中的热门“节点-路段”进行分类识别,并进行实例验证。研究结果表明:以5%为评价基准得到的热门“节点-路段”识别结果符合机场实际运行情况,主要集中在主滑行道S/W、平行滑行道C/E、15/33号跑道入口以及APN02的部分区域。研究结果可为场面运行安全和高效管理提供决策参考和方法指导。
Abstract:
In order to improve the safety management level of airport surface operation,the problem of identifying hot “node-segment” in surface taxiway network of complex airport was investigated with overall consideration of road network structure and trajectory data.Firstly,the characteristic elements of surface physical structure were extracted and integrated,and the original model and dual model of surface taxiway network were constructed.Secondly,a characteristic index system and its specific measurement method of surface taxiway network were established aiming at two perspectives of static structure and dynamic traffic flow,and the index screening mechanism based on the accumulative information contribution rate was designed.Finally,the CRITIC-VIKOR method was used to classify and identify the hot “node-segment” in the surface taxiway network,and the example verification was carried out.The results show that the identification results of hot “node-segment” based on 5% evaluation benchmark are consistent with the actual operation of the airport,mainly located in the primary taxiways S/W,parallel taxiways C/E,the entrance of runway 15/33,and partial regions of APN02.The research results can provide decision-making reference and methodological guidance for the safe and effective management of airport surface operation.

参考文献/References:

[1]YIN J N,MA Y Y,HU Y X,et al.Delay,throughput and emission tradeoffs in airport runway scheduling with uncertainty considerations [J].Networks and Spatial Economics,2021,21(1):85-122.
[2]KHADILKAR H,BALAKRISHNAN H.Network congestion control of airport surface operations[J].Journal of Guidance,Control,and Dynamics,2014,37(3):933-940.
[3]GUPET J,BRIANT O,GAYON J,et al.Integration of aircraft ground movements and runway operations[J].Transportation Research Part E:Logistics and Transportation Review,2017,104:131-149.
[4]王兴隆,尹昊.基于介度熵的机场飞行区关键冲突点识别[J].中国安全生产科学技术,2022,18(9):236-242. WANG Xinglong,YIN Hao.Identification of key conflict points in airport airfield area based on betweenness and degree entropy[J].Journal of Safety Science and Technology,2022,28(9):236-242.
[5]王兴隆,周督异.基于复杂网络的飞行区冲突关键栅格区识别[J].中国安全生产科学技术,2023,19(8):32-38. WANG Xinglong,ZHOU Duyi.Identification of critical grid areas in flight area conflicts based on complex network[J].Journal of Safety Science and Technology,2023,19(8):32-38.
[6]ALI H,DELAIR R,PHAM D,et al.Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections[C]//2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT).IEEE,2020.
[7]LIU C F,YIN H,SUN Y X,et al.A grade identification method of critical node in urban road network based on multi-attribute evaluation correction[J].Applied Sciences,2022,12(2):813.
[8]KOPSIDAS A,KEPAPTSOGLOU K,DAWSON K A,et al.Identification of critical stations in a Metro System:a substitute complex network analysis[J].Physica A:Statistical Mechanics and Its Applications,2022,596:127123.
[9]程明,梅傲然.基于关联规则的跑道着陆事件演化网络构建研究[J].中国安全生产科学技术,2022,18(12):203-208. CHENG Ming,MEI Aoran.Resarch on construction of evolution network for runway landing event based on association rules[J].Journal of Safety Science and Technology,2022,18(12):203-208.
[10]JIANG X R,WEN X X,WU M G,et al.A complex network analysis approach for identifying air traffic congestion based on independent component analysis[J].Physica A:Statistical Mechanics and Its Applications,2019,523:364-381.
[11]AKBARZADEH M,REIHANI S F S,SAMANI K A.Detecting critical links of urban networks using cluster detection methods[J].Physica A:Statistical Mechanics and Its Applications,2019,515:288-298
[12]张喜平,李永树,刘刚.基于对偶拓扑结构的路网路段重要性评估方法[J].测绘工程,2015(3):1-5,10. ZHANG Xiping,LI Yongshu,LIU Gang.Road section importance evalution method in complex traffic road network based on dual topology[J].Engineering of Surveying and Mapping,2015(3):1-5,10.
[13]ALMOTAHARI A,YAZICI A.A computationally efficient metric for identification of critical links in large transportation networks[J].Reliability Engineering & System Safety,2021,209:107458.
[14]KUMAR A,HAQUE K,MISHRA S,et al.Multi-criteria based approach to identify critical links in a transportation network[J].Case Studies on Transport Policy,2019,7(3):519-530.
[15]杜婧涵,胡明华,张魏宁,等.基于度量学习的机场交通态势弱监督评估[J].北京航空航天大学学报,2023,49(7):1772-1778. DU Jinghan,HU Minghua,ZHANG Weining,et al.Weakly supervised evaluation of airport traffic situation based on metric learning[J].Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1772-1778.
[16]YIN J N,HU M H,MA Y Y,et al.Airport taxi situation awareness with a macroscopic distribution network analysis[J].Networks and Spatial Economics,2019,19(3):669-695.
[17]YIN J N,HU Y X,MA Y Y,et al.Machine learning techniques for taxi-out time prediction with a macroscopic network topology[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC).IEEE,2018:1-8.
[18]陈洪海.基于反映象相关矩阵的评价指标筛选方法研究[J].中国管理科学,2022,30(11):149-158. CHEN Honghai.Method of screening evaluation indicators based on anti-image correlation matrix[J].Chinese Journal of Management Science,2022,30(11):149-158.
[19]OPRICOVIC S,TZENG G H.Compromise solution by MCDM methods:a comparative analysis of VIKOR and TOPSIS[J].European Journal of Operational Research,2004.
[20]KIM J H,AHN B S.Extended VIKOR method using incomplete criteria weights[J].Expert Systems with Applications,2019,126(7):124-132.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2023-11-09;网络首发日期: 2024-05-11
* 基金项目: 国家自然科学基金项目(52002178);江苏省自然科学基金项目(BK20190416);空中交通管理系统全国重点实验室开放课题(SKLATM202206)
作者简介: 权晶琴,硕士研究生,主要研究方向为机场场面运行性能评估。
通信作者: 尹嘉男,博士,主要研究方向为机场规划、管理与评估,空中交通流量管理,航空大数据与人工智能等。
更新日期/Last Update: 2024-05-30