|本期目录/Table of Contents|

[1]张春,隋彦臣.基于网格优化双层随机森林的采空区煤氧化升温预测研究*[J].中国安全生产科学技术,2024,20(5):177-183.[doi:10.11731/j.issn.1673-193x.2024.05.024]
 ZHANG Chun,SUI Yanchen.Prediction of coal oxidation temperature rise in goaf based on grid optimization double-layer random forest[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(5):177-183.[doi:10.11731/j.issn.1673-193x.2024.05.024]
点击复制

基于网格优化双层随机森林的采空区煤氧化升温预测研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年5期
页码:
177-183
栏目:
职业安全卫生管理与技术
出版日期:
2024-05-31

文章信息/Info

Title:
Prediction of coal oxidation temperature rise in goaf based on grid optimization double-layer random forest
文章编号:
1673-193X(2024)-05-0177-07
作者:
张春隋彦臣
(1.辽宁工程技术大学 安全科学与工程学院,辽宁 阜新 123000;
2.辽宁工程技术大学 矿山热动力灾害与防治教育部重点实验室,辽宁 葫芦岛 125105)
Author(s):
ZHANG Chun SUI Yanchen
(1.School of Safety Science and Engineering,Liaoning Technical University,Fuxin Liaoning 123000,China;
2.Key Laboratory of Mine Power Disaster and Prevention of Ministry of Education,Liaoning Technical University,Huludao Liaoning 125105,China)
关键词:
采空区煤氧化升温温度预测网格优化双层随机森林
Keywords:
goaf coal oxidation temperature rise temperature prediction grid optimization double-layer random forest
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2024.05.024
文献标志码:
A
摘要:
为了对采空区煤氧化升温的温度进行预测,在内蒙古某煤矿16402综放工作面进行长期的采空区气体和温度观测实验,采集到准确的采空区煤氧化升温过程中气体及温度数据,提出1种基于网格优化双层随机森林(WG-DRF)的采空区煤氧化升温预测方法,用该方法构建预测模型并与传统随机森林、BP神经网络和支持向量回归模型的预测结果进行对比。研究结果表明:WG-DRF模型预测的平均绝对误差MAE,均方误差MSE,决定系数R2分别为1.725,6.158,0.903,优于其他模型。通过更换数据集对WG-DRF方法进行测试,验证双层随机森林模型具有较强的泛化性。研究结果可为采空区煤氧化升温的温度预测提供参考。
Abstract:
In order to predict the temperature of coal oxidation temperature rise in goaf,a long-term observation experiment of goaf gas and temperature was carried out on the 16402 fully mechanized caving face of a coal mine in Inner Mongolia to collect accurate gas and temperature data during the process of coal oxidation heating in goaf.A method for predicting the coal oxidation temperature rise in goaf based on the grid optimization double-layer random forest (WG-DRF) was proposed.The prediction model was constructed by this method and compared with the prediction results of traditional random forest,BP neural network and support vector regression model.The results show that the mean absolute error MAE,mean square error MSE and coefficient of determination R2 of WG-DRF model are 1.725,6.158 and 0.903,respectively,which are better than the other models.The WG-DRF method is tested by changing the data set,and it verified that the double-layer random forest model has strong generalization.The research results can provide reference for the temperature prediction of coal oxidation temperature rise in goaf.

参考文献/References:

[1]周西华,曾晓坤,白刚,等.基于响应曲面法的遗煤自燃分析与研究[J].中国安全生产科学技术,2020,16(10):34-39. ZHOU Xihua,ZENG Xiaokun,BAI Gang,et al.Analysis and research on spontaneous combustion of residual coal based on response surface method [J].Journal of Safety Science and Technology,2020,16(10):34-39.
[2]郭庆.采空区煤自燃预警技术及应用研究[D].徐州:中国矿业大学,2021.
[3]LEI C K,LI J J,RUO Y B,et al.Study on multifield migration and evolution law of the oxidation heating process of coal spontaneous combustion in dynamic goaf [J].ACS Omega,2023,8(15):14197-14207.
[4]WANG R Q,LIU Z H,SUN Z C,et al. Study on prediction of spontaneous combustion fire in goaf of coal mine[C]//International Conference on Intelligent Equipment and Special Robots(ICIESR).SPIE,2021:694-699.
[5]张利冬,宋泽阳,罗振敏,等.基于机器学习的煤自然发火期预测[J].中国安全科学学报,2022,32(12):118-124. ZHANG Lidong,SONG Zeyang,LUO Zhenmin,et al.Prediction of coal spontaneous ignition period based on machine learning [J].China Safety Science Journal,2022,32(12):118-124.
[6]昝军才,魏成才,蒋可娟,等.基于BP神经网络的煤自燃温度预测研究[J].煤炭工程,2019,51(10):113-117. ZAN Juncai,WEI Chengcai,JIANG Kejuan,et al.Prediction of coal spontaneous combustion temperature based on BP neural network [J].Coal Engineering,2019,51(10):113-117.
[7]张天宇,鲁义,施式亮,等.基于支持向量机分类算法的多煤种煤自燃危险性预测[J].湖南科技大学学报(自然科学版),2019,34(2):11-17. ZHANG Tianyu,LU Yi,SHI Shiliang,et al.Spontaneous combustion risk prediction of multiple coal species based on support vector machine classification algorithm [J].Journal of Hunan University of Science and Technology (Natural Science Edition),2019,34(2):11-17.
[8]张辛亥,孙久政,陈晓坤,等.基于指标气体的煤自燃预报人工神经网络专家系统研究[J].煤矿安全,2010,41(3):10-12. ZHANG Xinhai,SUN Jiuzheng,CHEN Xiaokun,et al.Research on artificialneural network expert system for coal spontaneous combustion prediction basedon index gas [J].Safety in Coal Mine,2010,41(3):10-12.
[9]姜鹏.基于机器学习的煤自燃温度预测模型研究[D].西安:西安科技大学,2020.
[10]孙宇航.基于改进模糊支持向量机的煤与瓦斯突出预测[D].徐州:中国矿业大学,2019.
[11]马晟翔,李希建.改进的BP神经网络煤矿瓦斯涌出量预测模型[J].矿业研究与开发,2019,39(10):138-142. MA Shengxiang,LI Xijian.Improved BP neural network prediction model forcoal mine gas emission [J].Mining Research and Development,2019,39(10):138-142.
[12]周亮.高瓦斯易自燃煤层采空区遗煤自燃预警研究[D].淮南:安徽理工大学,2018.
[13]倪景峰,李振,乐晓瑞,等.基于随机森林的阻变型通风网络故障诊断方法[J].中国安全生产科学技术,2022,18(4):34-39. NI Jingfeng,LI Zhen,LE Xiaorui,et al.Fault diagnosis method of resistance ventilation network based on random forest [J].Journal of Safety Science and Technology,2022,18(4):34-39.
[14]MUKUL S,SINGH B C,HERMANT A.Prediction of backbreak in hot strata/fiery seam of open-pit coal mine by decision tree and random forest algorithm [J].Arabian Journal of Geosciences,2022,15(15):1337-1343.
[15]顾凯成.改进网格搜索的支持向量机参数优化研究及应用[D].兰州:兰州理工大学,2016.
[16]杨杏丽.基于正则化交叉验证的模型选择方法[D].太原:山西大学,2021.
[17]武向强.基于分布式光纤测温系统的采空区自燃“三带”动态变化研究[D].徐州:中国矿业大学,2023.

相似文献/References:

[1]吕文陵,杨胜强,徐全,等.高瓦斯矿井孤岛综放采空区遗煤自燃综合防治技术[J].中国安全生产科学技术,2010,6(5):60.
 LV Wen-ling,YANG Sheng-qiang,XU Quan,et al.Prevention and extinguishment technology of spontaneous combustion for isolated island fully mechanized caving goaf in high-gas mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(5):60.
[2]胡家国,马海涛.铁矿采空区处理方案研究[J].中国安全生产科学技术,2010,6(5):67.
 HU Jia-guo,MA Hai-tao.Study of on treating method of goaf in iron-mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(5):67.
[3]刘勇锋,马海涛,付士根.综合物探技术在老空区水害防治中的应用[J].中国安全生产科学技术,2010,6(6):103.
 LIU Yong-feng,MA Hai-tao,FU Shi-gen.Application of comprehensive geophysical exploration technology in prevention and control of goaf water disaster[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(5):103.
[4]何磊,杨胜强,孙祺,等.Y型通风下采空区瓦斯运移规律及治理研究[J].中国安全生产科学技术,2011,7(2):50.
 HE Lei,YANG Sheng qiang,SUN Qi,et al.Study on gas transportation principle and control in goaf with Yshape ventilation system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(5):50.
[5]马海涛,刘勇锋,胡家国.基于C-ALS采空区探测及三维模型可视化研究[J].中国安全生产科学技术,2010,6(3):38.
 MA Hai-tao,LIU Yong-feng,HU Jia-guo.Study on Gob detection and visualization of three-dimensional model based on C-ALS[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(5):38.
[6]齐福荣,李忠,武强.信息融合技术在采空区安全评价中的应用研究[J].中国安全生产科学技术,2010,6(1):13.
 QI Fu-rong,LI Zhong,WU Qiang.Information fusion and it’s application in evaluation of coal-goaf safety[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(5):13.
[7]马海涛 ,谢芳  .大规模采空区渐进式矿柱坍塌的简化模拟[J].中国安全生产科学技术,2013,9(8):17.[doi:10.11731/j.issn.1673-193x.2013.08.003]
 MA Hai tao,XIE Fang.Simplified simulation on cascading pillar failure in largescale goaf[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):17.[doi:10.11731/j.issn.1673-193x.2013.08.003]
[8]陈娇,罗周全,侯造水.基于改进突变级数法的金属矿采空区稳定性评价[J].中国安全生产科学技术,2013,9(11):17.[doi:10.11731/j.issn.1673-193x.2013.11.003]
 CHEN Jiao,LUO Zhou quan,HOU Zao shui.Stability evaluation of metal mine goaf based on improved catastrophe progression method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):17.[doi:10.11731/j.issn.1673-193x.2013.11.003]
[9]王海燕,冯超,耿兰,等.基于能位测定和示踪检测法的地下煤火漏风状态研究[J].中国安全生产科学技术,2014,10(1):118.[doi:10.11731/j.issn.1673-193x.2014.01.020]
 WANG Hai yan,FENG Chao,GENG Lan,et al.Study on air leakage in underground coal fire based on energy level and tracer test[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(5):118.[doi:10.11731/j.issn.1673-193x.2014.01.020]
[10]丘 帆,马海涛,欧阳明,等.基于Voronoi图和时间效应的矿柱失稳预测[J].中国安全生产科学技术,2014,10(2):38.[doi:10.11731/j.issn.1673-193x.2014.02.007]
 QIU Fan,MA Hai tao,OUYANG Ming,et al.Prediction of pillar instability based on Voronoi chart and time effect[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(5):38.[doi:10.11731/j.issn.1673-193x.2014.02.007]

备注/Memo

备注/Memo:
收稿日期: 2023-12-28
* 基金项目: 国家自然科学基金项目(52174183,51774170)
作者简介: 张春,博士,副教授,主要研究方向为矿井灾害防治、矿井通风和冲击地压防治。
通信作者: 隋彦臣,硕士研究生,主要研究方向为矿井灾害防治。
更新日期/Last Update: 2024-05-30