|本期目录/Table of Contents|

[1]温志辉,方智银,赵延霞,等.无烟煤分子模型构建及优化方法研究*[J].中国安全生产科学技术,2024,20(4):94-100.[doi:10.11731/j.issn.1673-193x.2024.04.013]
 WEN Zhihui,FANG Zhiyin,ZHAO Yanxia,et al.Research on construction and optimization method of anthracite molecular model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(4):94-100.[doi:10.11731/j.issn.1673-193x.2024.04.013]
点击复制

无烟煤分子模型构建及优化方法研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年4期
页码:
94-100
栏目:
职业安全卫生管理与技术
出版日期:
2024-04-30

文章信息/Info

Title:
Research on construction and optimization method of anthracite molecular model
文章编号:
1673-193X(2024)-04-0094-07
作者:
温志辉方智银赵延霞王奇毋新亮
(1.河南理工大学 瓦斯地质与瓦斯治理国家重点实验室培育基地,河南 焦作 454000;
2.煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454000;
3.河南理工大学 安全科学与工程学院,河南 焦作 454000;
4.河南理工大学 数学与信息科学学院,河南 焦作 454000)
Author(s):
WEN Zhihui FANG Zhiyin ZHAO Yanxia WANG Qi WU Xinliang
(1.State Key Laboratory Cultivation Base for Gas Geology and Gas Control,Henan Polytechnic University,Jiaozuo Henan 454000,China;
2.State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization,Jiaozuo Henan 454000,China;
3.College of Safety Science and Engineering,Henan Polytechnic University,Jiaozuo Henan 454000,China;
4.School of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo Henan 454000,China)
关键词:
无烟煤13C-核磁共振傅里叶变换红外光谱分子模型模型优化
Keywords:
anthracite 13C-NMR Fourier transform infrared spectroscopy molecular model model optimization
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2024.04.013
文献标志码:
A
摘要:
为了认识煤的分子结构特征,采用元素分析、13C-核磁共振、傅里叶变换红外光谱等测试方法构建无烟煤大分子模型。研究结果表明:大分子模型中芳香碳以C的2、3环结构为主,确定其模型分子式为C193H138N2O7;结构和退火优化后,其分子模型越发紧凑,键角更加弯曲,添加周期边界条件后其体系能量迅速降低,这是由于价电子能中的键伸缩能和非成键能中的范德华能降低所导致的,通过密度模拟得到无烟煤大分子最优模型的密度为1.45 g/cm3。研究结果可为构建煤大分子模型提供参考。
Abstract:
In order to understand the molecular structure characteristics of coal,the testing methods such as elemental analysis,13C-nuclear magnetic resonance (NMR),and Fourier transform infrared spectroscopy were used to construct a macromolecular model of anthracite.The results show that the aromatic carbon in the macromolecular model is dominated by C2 and C3 ring structures,and the molecular formula of the model is determined to be C193H138N2O7.After the structural and annealing optimization,the molecular model becomes more compact,with bond angles becoming more curved.After adding the periodic boundary conditions,the energy of the system decreases rapidly,which is mainly caused by the decrease of bond stretching energy and van der Waals energy in non-bonding energy in the valence electron energy.The density of the optimal macromolecular model of anthracite is 1.45 g/cm3 by density simulation.The research results can provide a reference for constructing the macromolecular models of coal.

参考文献/References:

[1]苗琦,孟刚,陈敏,等.我国煤炭资源可供性分析及保障研究[J].能源与环境,2020,159(2):6-8,23. MIAO Qi,MENG Gang,CHEN Min,et al.Study on the availability and guarantee of coal resources in China[J].Energy and Environment,2020,159(2):6-8,23.
[2]张建强,宁树正,陈美英,等.我国煤炭资源开发前景及对策[J].地质论评,2020,66(增刊1):143-145. ZHANG Jianqiang,NING Shuzheng,CHEN Meiying,et al.Prospects and countermeasures of coal resources development in China[J].Geological Review,2020,66(Supplement 1):143-145.
[3]WISER W H.Conversion of bituminous coal to liquids and gases:chemistry and representative processes[M].Dordrecht:Springer Netherlands,1984.
[4]GIVEN P H.Structure of bituminous coals:evidence from distribution of hydrogen[J].Nature,1959,184:980-981.
[5]SHINN J H.Visualization of complex hydrocarbon reaction systems[J].Preprints of Papers American Chemical Society Division of Fuel Chemistry,1996,41(6):418.
[6]MENG X L,GAO M Q,CHU R Z,et al.Construction of a macromolecular structural model of Chinese lignite and analysis of its low-temperature oxidation behavior[J].Chinese Journal of Chemical Engineering,2017,25(9):1314-1321.
[7]孟筠青,张硕,曹子豪,等.屯留矿煤分子孔隙重构及其表征与分析[J].煤炭学报,2022,47(增刊1):160-170. MENG Junqing,ZHANG Shuo,CAO Zihao,et al.Insight on coal molecular-scale pore reconstruction of Tunliu mine and its characterization and analysis[J].Journal of China Coal Society,2022,47(Supplement 1):160-170.
[8]ZHANG S,WANG Z M,ZHANG X D,et al.Construction of molecular structure model of tunlan coal and its micro-scopic physicochemical mechanism[J].Fuel,2022,308:121936.
[9]NARKIEWICZ M R,MATHEWS J P.Improved low-volatile bituminous coal representation:incorporating the molecular-weight distribution[J].Energy & Fuels,2008,22(5):3104-3111.
[10]NIEKERK D V,MATHEWS J P.Molecular representations of permian-aged vitrinite-rich and inertinite-rich south African coals[J].Fuel,2010,89(1):73-82.
[11]聂尧,赵越超.煤中多组分混合气体竞争吸附研究现状及工程应用[J].矿业科学学报,2020,5(1):45-57. NIE Yao,ZHAO Yuechao.Research status and engineering application of competitive adsorption of multicomponent mixed gases in coal[J].Journal of Mining Science and Technology 2020,5(1):45-57.
[12]全国煤炭标准化技术委员会.煤的工业分析方法:GB/T 212—2008[S].北京:中国标准出版社,2008.
[13]全国煤炭标准化技术委员会.煤中碳和氢的测定方法:GB/T 476—2008[S].北京:中国标准出版社,2009.
[14]YAN J,LEI Z,LI Z,et al.Molecular structure characterization of low-medium rank coals via XRD,solid state 13C NMR and FTIR spectroscopy[J].Fuel,2020,268:117038.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2023-11-21
* 基金项目: 国家自然科学基金项目(52274191);中国博士后科学基金项目(2021M700132);河南理工大学博士基金项目(B2019-55)
作者简介: 温志辉,博士,副教授,主要研究方向为煤矿瓦斯灾害防治。
通信作者: 赵延霞,博士,副教授,主要研究方向为煤分子模型构建及优化。
更新日期/Last Update: 2024-05-09