[1]尹志民,赵作鹏,刘韵.煤矿隐患排查信息平台的设计[J].煤矿安全,2009,40(8):68-70.
YIN Zhimin,ZHAO Zuopeng,LIU Yun.Design of information platform for hidden danger investigation in coal mine[J].Safety in Coal Mines,2009,40(8):68-70.
[2]CHANG J,GERRISH S,WANG C,et al.Reading tea leaves:how humans interpret topic models[J].Advances in Neural Information Processing Systems,2009:288-296.
[3]刘金硕,彭映月,章岚昕,等.网络食品安全问题话题发现的LDA-K-means算法[J].武汉大学学报(工学版),2017,50(2):307-310.
LIU Jinshuo,PENG Yingyue,ZHANG Lanxin,et al.LDA-K-means algorithm for topic discovery of online food safety issues[J].Engineering Journal of Wuhan University,2017,50(2):307-310.
[4]WANG Z,LI H,TANG R.Network analysis of coal mine hazards based on text mining and link prediction[J].International Journal of Modern Physics C,2019,30(7):1940009-1940029.
[5]詹平,刘飞翔,赵嘉良.基于LDA和ARIMA模型的煤矿安全隐患数量预测研究[J].煤,2024,33(3):39-44.
ZHAN Ping,LIU Feixiang,ZHAO Jialiang.Text mining and analysis of coal mine safety hazards based on LDA and ARIMA models[J].Coal,2024,33(3):39-44.
[6]BLEID M,NGA Y,JORDANM I.Latent dirichlet allocation [J].Journal of Machine Learning Research,2003(3):993-1022.
[7]GRIFFITHS T L,STEYVERS M.Finding scientific topics[J].Proceedings of the National academy of Sciences,2004,101(Supplement 1):5228-5235.
[8]ARUN R,SURESH V,VENIMADHAVAN C E,et al.On finding the natural number of topics with latent dirichlet allocation:some observations[J].Advances in Knowledge Discovery and Data Mining.2010:391-402.
[9]关鹏,王曰芬.科技情报分析中LDA主题模型最优主题数确定方法研究[J].现代图书情报技术,2016(9):42-50.
GUAN Peng,WANG Yuefen.Identifying optimal topic numbers from Sci-Tech information with LDA model[J].New Technology of Library and Information Service,2016(9):42-50.
[10]武惠,吕立,于碧辉.基于迁移学习和BiLSTM-CRF的中文命名实体识别[J].小型微型计算机系统,2019,40(6):1142-1147.
WU Hui,LYU Li,YU Bihui.Chinese named enity recognition based on transfer learning and BiLSTM-CRF[J].Journal of Chinese Mini-Micro Computer Systems,2019,40(6):1142-1147.
[11]WU Z H,HUANG N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
[12]GLIGIC L,KORMILITZIN A,GOLDBERG P,et al.Named entity recognition in electronic health records using transfer learning bootstrapped neural networks[J].Neural Networks,2020,121:132-139.
[13]GIORGI J M,BADER G D.Transfer learning for biomedical named entity recognition with neural networks[J].Bioinformatics,2018,34(23):4087-4094.
[14]王莉莉,王宏渊,白玛曲珍,等.基于BiLSTM-CRF模型的藏文分词方法[J].重庆邮电大学学报(自然科学版),2020,32(4):648-654.
WANG Lili,WANG Hongyuan,BAIMA Quzhen,et al.Tibetan word segmentation method based on BiLSTM-CRF model[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2020,32(4):648-654.
[15]王婷婷,韩满,王宇.LDA模型的优化及其主题数量选择研究—以科技文献为例[J].数据分析与知识发现,2018,2(1):29-40.
WANG Tingting,HAN Man,WANG Yu.Research optimizing LDA model with various topic numbers: case study of scientific literature[J].Data Analysis and Knowledge Discovery,2018,2(1):29-40.
[16]张应成,杨洋,蒋瑞,等.基于BiLSTM-CRF的商情实体识别模型[J].计算机工程,2019,45(5):308-314.
ZHANG Yingcheng,YANG Yang,JIANG Rui,et al.Commercial intelligence entity recognition model based on BiLSTM-CRF[J].Computer Engineering,2019,45(5):308-314.
[17]LUO L,YANG Z,YANG P,et al.An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J].Bioinformatics,2018,34(8):1381-1388.