|本期目录/Table of Contents|

[1]胡纪年,李雨成,李俊桥,等.基于CNN的矿井外因火灾火源定位方法研究[J].中国安全生产科学技术,2024,20(3):134-140.[doi:10.11731/j.issn.1673-193x.2024.03.019]
 HU Jinian,LI Yucheng,LI Junqiao,et al.Study on localization method of mine exogenous fire source based on CNN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(3):134-140.[doi:10.11731/j.issn.1673-193x.2024.03.019]
点击复制

基于CNN的矿井外因火灾火源定位方法研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年3期
页码:
134-140
栏目:
职业安全卫生管理与技术
出版日期:
2024-03-31

文章信息/Info

Title:
Study on localization method of mine exogenous fire source based on CNN
文章编号:
1673-193X(2024)-03-0134-07
作者:
胡纪年李雨成李俊桥张巍
(太原理工大学 安全与应急管理工程学院,山西 太原 030024)
Author(s):
HU Jinian LI Yucheng LI Junqiao ZHANG Wei
(School of Safety and Emergency Management Engineering,Taiyuan University of Technology,Taiyuan Shanxi 030024,China)
关键词:
矿井火灾火源定位卷积神经网络(CNN)Ventfire模拟
Keywords:
mine fire fire source localization convolutional neural network (CNN) Ventfire simulation
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2024.03.019
文献标志码:
A
摘要:
为了在矿井发生火灾时能够及时准确定位火灾发生位置,解决当前矿井火灾监测方法中存在的局部监测方法覆盖区域较为有限、整体监测定位系统泛化性能不强等问题,提出1种基于深度卷积神经网络(CNN)的矿井外因火灾火源位置识别模型,阐述该模型的基本框架及数据处理方法,使用Ventfire程序生成火灾模拟数据进行训练及优化。研究结果表明:对案例数据测试中,定位发生火灾巷道的准确率为85.3%,定位火灾发生巷道所在范围(5条巷道)的准确率为92.6%。研究结果可为提高矿井外因火灾识别定位的智能化水平提供参考。
Abstract:
In order to locate the fire location in time and accurately when a fire occurs in the mine,and solve the problems of limited coverage of local monitoring methods and weak generalization performance of the overall monitoring and localization system in current mine fire monitoring methods,a location recognition model of mine exogenous fire source based on deep convolutional neural network (CNN) was proposed.The basic framework and data processing methods of the model were elaborated,and the Ventfire program was used to generate fire simulation data for training and optimization.The results show that in the data testing of the case study,the accuracy of locating the fire prone roadway is 85.3%,and the accuracy of locating the range of the fire prone roadways (5 roadways) is 92.6%.The research results can provide reference for improving the intelligent level of identifying and locating the mine exogenous fires.

参考文献/References:

[1]周福宝,辛海会,魏连江,等.矿井智能通风理论与技术研究进展[J].煤炭科学技术,2023,51(1):313-328.ZHOU Fubao,XIN Haihui,WEI Lianjiang,et al.Research progress in the theory and technology of intelligent ventilation in mines[J].Coal Science and Technology,2023,51(1):313-328.
[2]刘剑.矿井智能通风关键科学技术问题综述[J].煤矿安全,2020,51(10):108-111,117.LIU Jian.Summary of key scientific and technological issues in intelligent ventilation of mines[J].Safety in Coal Mines,2020,51(10):108-111,117.
[3]张智韬,李雨成,李俊桥,等.智能通风精准调控系统架构及实现[J].煤炭学报,2023,48(4):1596-1605.ZHANG Zhitao,LI Yucheng,LI Junqiao,et al.Architecture and implementation of intelligent ventilation precision control system[J].Journal of China Coal Society,2023,48(4):1596-1605.
[4]周福宝,魏连江,夏同强,等.矿井智能通风原理、关键技术及其初步实现[J].煤炭学报,2020,45(6):2225-2235.ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al.Principles,keytechnologies,and preliminary implementation of intelligent ventilation in mines[J].Journal of China Coal Society,2020,45(6):2225-2235.
[5]LAAGE L,POMROY W.Method of locating underground mines fires:US 5121344[R].National Energy Technology Laboratory (NETL),Pittsburgh,PA,Morgantown,WV (United States),1992.
[6]王都霞,周福宝,程远国.井下火灾位置判断的程序设计[J].工矿自动化,2000(3):12-13.WANG Duxia,ZHOU Fubao,CHENG Yuanguo.The program design of underground fire location judgment[J].Journal of Mine Automation,2000(3):12-13.
[7]WIRTH G J,SCHULTZ M J,FRANCART W J.The use of atmospheric monitoring systems in dieselized coal mines [R].Society for Mining,Metallurgy,and Exploration,Incorporated,Littleton,Colorado (United States),1995.
[8]李兴东.火灾监测及其位置识别[J].矿业安全与环保,2001(3):35-37.LI Xingdong.Fire monitoring and location identification[J].Mining Safety & Environmental Protection,2001(3):35-37.
[9]任慧,孙继平,田子建,等.基于神经网络的多参数矿井火灾识别方法[J].辽宁工程技术大学学报,2007(4):555-558.REN Hui,SUN Jiping,TIAN Zijian,et al.A multi parameter mine fire identification method based on neural networks[J].Journal of Liaoning Technical University,2007(4):555-558.
[10]ZHAO H.Research on fire detection in coal mine based on GA-improved wavelet neural networks[J].Advanced Materials Research,2012,490-495:1636-1639.
[11]WANG Y,MA X.Research on fire detection in coal mine based on fuzzy neural network [C]//2010 Sixth International Conference on Natural Computation.Yantai:IEEE,2010,2:539-541.
[12]国珍.改进型蚁群算法在矿井火灾定位系统中的应用[J].煤矿安全,2012,43(8):151-154.GUO Zhen.Application of improved ant colony algorithm in mine fire location system[J].Safety in Coal Mines,2012,43(8):151-154.
[13]叶小婷,武莎莎.火灾预警的SVR应用研究[J].测控技术,2015,34(8):19-22.YE Xiaoting,WU Shasha.Research on the application of SVR in fire warning[J].Measurement & Control Technology,2015,34(8):19-22.
[14]YUAN L,THOMAS R A,ROWLAND J H,et al.Early fire detection for underground diesel fuel storage areas[J].Process Safety and Environmental Protection,2018,119:69-74.
[15]孙继平,李月.基于双目视觉的矿井外因火灾感知与定位方法[J].工矿自动化,2021,47(6):12-16,78.SUN Jiping,LI Yue.A method for mine external fire perception and location based on binocular vision[J].Journal of Mine Automation,2021,47(6):12-16,78.
[16]BAHRAMI D,ZHOU L,YUAN L.Field verification of an improved mine fire location model[J].Mining Metallurgy & Exploration,2021,38(1):559-566.
[17]李东发,臧燕杰,师吉林.矿井火灾智能预警系统[J].工矿自动化,2022,48(增刊1):112-115,120.LI Dongfa,ZANG Yanjie,SHI Jilin.Intelligent early warning system for mine fire[J].Journal of Mine Automation,2022,48(Supplement 1):112-115,120.
[18]邓军,王志强,王伟峰,等.基于LSTM-AE-OCSVM的带式输送机火灾监测隐患识别技术[J].煤炭技术,2023,42(1):225-229.DENG Jun,WANG Zhiqiang,WANG Weifeng,et al.LSTM-AE-OCSVM based hidden danger identification technology for belt conveyor fire monitoring[J].Coal Technology,2023,42(1):225-229.
[19]ZHOU L,SMITH A C.Improvement of a mine fire simulation program-incorporation of smoke rollback into MFIRE 3.0[J].Journal of Fire Sciences,2012,30(1):29-39.
[20]邢玉忠.矿井重大灾害动态机理与救援技术信息支持系统研究[D].太原:太原理工大学,2007.
[21]STEWART C M.Challenges and solutions in the development of the VentFIRE mine network fire simulator [C]//Mine Ventilation:Proceedings of the 18th North American Mine Ventilation Symposium.Rapid City:CRC Press,2021:300.
[22]贾静,郭立稳,朱令起,等.矿井巷道火灾烟流逆退数值模拟及临界风速研究[J].中国安全生产科学技术,2020,16(4):94-100.JIA Jing,GUO Liwen,ZHU Lingqi,et al.Numerical simulation of smoke flow reverse flow in mine roadway fires and study on critical wind speed[J].Journal of Safety Science and Technology,2020,16(4):94-100.
[23]全国安全生产标准化技术委员会煤矿安全分技术委员会.煤矿井工开采通风技术条件:AQ 1028—2006[S].北京:煤炭工业出版社,2006.
[24]张巍,李雨成,张欢,等.面向通风智能化的风速传感器结构化数据降噪方法对比[J].中国安全生产科学技术,2021,17(8):70-76.ZHANG Wei,LI Yucheng,ZHANG Huan,et al.Comparison of structured data denoising methods of wind speed sensor for ventilation intelligence [J].Journal of Safety Science and Technology,2021,17(8):70-76.
[25]ZHOU X,TANG Z,XU W,et al.Deep learning identifies accurate burst locations in water distribution networks[J].Water Research,2019,166:115058.

相似文献/References:

[1]张龙,袁树杰,朱成涛.俯采工作面采空区“三带”分布研究[J].中国安全生产科学技术,2013,9(5):67.[doi:10.11731/j.issn.1673-193x.2013.05.013]
 ZHANG Long,YUAN Shu jie,ZHU Cheng tao,et al.Study on distribution of “Three Zones” in goaf of fully mechanized underhand mining face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(3):67.[doi:10.11731/j.issn.1673-193x.2013.05.013]
[2]邬云龙,谭波.基于粗糙集Skowron差别矩阵的矿井火灾风险评价指标约简[J].中国安全生产科学技术,2016,12(5):60.[doi:10.11731/j.issn.1673-193x.2016.05.011]
 WU Yunlong,TAN Bo.Reduction of risk assessment indexes for mine fire based on Skowron discernibility matrix of rough set theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):60.[doi:10.11731/j.issn.1673-193x.2016.05.011]
[3]贾静,郭立稳,朱令起,等.矿井巷道火灾烟流逆退数值模拟及临界风速研究[J].中国安全生产科学技术,2020,16(4):94.[doi:10.11731/j.issn.1673-193x.2020.04.015]
 JIA Jing,GUO Liwen,ZHU Lingqi,et al.Study on numerical simulation of smoke backflow and critical wind speed in mine roadway fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):94.[doi:10.11731/j.issn.1673-193x.2020.04.015]
[4]李贺,田丽,曾钢,等.基于FDS的风速对矿井火灾蔓延规律的影响研究*[J].中国安全生产科学技术,2022,18(5):143.[doi:10.11731/j.issn.1673-193x.2022.05.022]
 LI He,TIAN Li,ZENG Gang,et al.Study on influence of wind speed on spread law of mine fire based on FDS[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):143.[doi:10.11731/j.issn.1673-193x.2022.05.022]
[5]闫帅,王刚,洪林,等.细水雾与纵向通风对倾斜巷道火灾烟气运动规律影响研究*[J].中国安全生产科学技术,2024,20(2):188.[doi:10.11731/j.issn.1673-193x.2024.02.026]
 YAN Shuai,WANG Gang,HONG Lin,et al.Research on influence of water mist and longitudinal ventilation on smoke movement in inclined roadway fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(3):188.[doi:10.11731/j.issn.1673-193x.2024.02.026]

备注/Memo

备注/Memo:
收稿日期: 2023-10-09
作者简介: 胡纪年,硕士研究生,主要研究方向为矿井智能通风与火灾防治。
更新日期/Last Update: 2024-04-07