[1]新华社.湖南长沙“4·29”特别重大居民自建房倒塌事故调查报告公布[EB/OL].(2023-05-21)[2023-06-16].https://www.mem.gov.cn/xw/bndt/202305/t20230521_451393.shtml.
[2]朱杰,陈洋,蔡乐刚.基于既有房屋信息系统的安全管理预警技术研究与应用[J].安全与环境工程,2018,25(3):166-171.
ZHU Jie,CHEN Yang,CAI Legang.Research andapplication of pre-warning technology for existing houses safety management based on information system[J].Safety and Environmental Engineering,2018,25(3):166-171.
[3]赵睿.房屋安全管理动态信息化研究[D].镇江:江苏大学,2018.
[4]赵挺生,任玲玲,周炜,等.基于熵权法-CIM模型的高速公路施工临近房屋安全风险评价[J].中国安全生产科学技术,2017,13(3):174-179.
ZHAO Tingsheng,REN Lingling,ZHOU Wei,et al.Safety risk assessment on buildings adjacent to construction site of expressway based on entropy-weight method and CIM model[J].Journal of Safety Science and Technology,2017,13(3):174-179.
[5]段在鹏,李帆,邱少辉,等.地铁沿线老旧房屋结构安全预警模型[J].中国安全生产科学技术,2022,18(3):162-167.
DUAN Zaipeng,LI Fan,QIU Shaohui,et al.Early warning model for structural safety of old buildings along metro lines[J].Journal of Safety Science and Technology,2022,18(3):162-167.
[6]BENDAK S,ALHAMMADI A A.A multi-criteria decision-making approach to minimising fire risk in detached house designs[J].Journal of Engineering,Design and Technology,2019,17(6):1146-1160.
[7]中华人民共和国住房和城乡建设部.危险房屋鉴定标准:JGJ 125—2016 [S].北京:中国建筑工业出版社,2016.
[8]YAO G,LEI T,ZHONG J.A review of convolutional-neural-network-based action recognition[J].Pattern Recognition Letters,2019,118:14-22.
[9]PINTO G,WANG Z,ROY A,et al.Transfer learning for smart buildings:A critical review of algorithms,applications,and future perspectives[J].Advances in Applied Energy,2022,5:100084.
[10]TOO E C,LIY J,NJUKI S,et al.A comparative study of fine-tuning deep learning models for plant disease identification[J].Computers and Electronics in Agriculture,2019,161:272-279.
[11]DRITSAS E,TRIGKA M.Stroke risk prediction with machine learning techniques[J].Sensors,2022,22(13):4670.
[12]YANG L,AGHAABBASI M,ALI M,et al.Comparative analysis of the optimized KNN,SVM,and ensemble DT models using Bayesian optimization for predicting pedestrian fatalities:an advance towards realizing the sustainable safety of pedestrians[J].Sustainability,2022,14(17):10467.
[13]BHARTI J P,MISHRA P,MOORTHY U,et al.Slope stability analysis using Rf,Gbm,Cart,Bt and Xgboost[J].Geotechnical and Geological Engineering,2021,39:3741-3752.
[14]FERNANDEZ A,GARCIA S,HERRERA F,et al.SMOTE for learning from imbalanced data:progress and challenges,marking the 15-year anniversary[J].Journal of artificial intelligence research,2018,61:863-905.
[15]VIOLA J,CHEN Y Q,WANG J.FaultFace:Deep convolutional generative adversarial network (DCGAN) based ball-bearing failure detection method[J].Information Sciences,2021,542:195-211.
[16]CHOPRA N,ANSARI M M.Golden jackal optimization:A novel nature-inspired optimizer for engineering applications[J].Expert Systems with Applications,2022,198:116924.
[17]FAWCETT T.An introduction to ROC analysis[J].Pattern recognition letters,2006,27(8):861-874.
[1]涂思羽,彭平安,蒋元建.基于深度学习的井下环境异常工况智能识别技术研究[J].中国安全生产科学技术,2018,14(11):58.[doi:10.11731/j.issn.1673-193x.2018.11.009]
TU Siyu,PENG Pingan,JIANG Yuanjian.Research on intelligent recognition technology of abnormal operating conditions in underground environment based on deep learning method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(2):58.[doi:10.11731/j.issn.1673-193x.2018.11.009]
[2]刘欣宜,张宝峰,符烨,等.基于深度学习的污染场地作业人员着装规范性检测[J].中国安全生产科学技术,2020,16(7):169.[doi:10.11731/j.issn.1673-193x.2020.07.027]
LIU Xinyi,ZHANG Baofeng,FU Ye,et al.Detection on normalization of operating personnel dressing at contaminated sites based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(2):169.[doi:10.11731/j.issn.1673-193x.2020.07.027]
[3]毕东月.基于深度学习的输煤皮带故障视觉检测方法研究[J].中国安全生产科学技术,2021,17(8):84.[doi:10.11731/j.issn.1673-193x.2021.08.013]
BI Dongyue.Research on visual detection method for fault of coal conveyor belt based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(2):84.[doi:10.11731/j.issn.1673-193x.2021.08.013]
[4]崔铁军,王凌霄.YOLOv4目标检测算法在煤矿工人口罩佩戴监测工作中的应用研究*[J].中国安全生产科学技术,2021,17(10):66.[doi:10.11731/j.issn.1673-193x.2021.10.010]
CUI Tiejun,WANG Lingxiao.Research on application of YOLOv4 object detection algorithm in monitoring on masks wearing of coal miners[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(2):66.[doi:10.11731/j.issn.1673-193x.2021.10.010]
[5]刘超,雷晨,李树刚,等.基于CNN-GRU的瓦斯浓度预测模型及应用*[J].中国安全生产科学技术,2022,18(9):62.[doi:10.11731/j.issn.1673-193x.2022.09.009]
LIU Chao,LEI Chen,LI Shugang,et al.Prediction model of gas concentration based on CNN-GRU and its application[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(2):62.[doi:10.11731/j.issn.1673-193x.2022.09.009]
[6]曹亚利,李振雷,刘旭东,等.基于卷积神经网络的冲击地压预警方法研究*[J].中国安全生产科学技术,2022,18(10):101.[doi:10.11731/j.issn.1673-193x.2022.10.015]
CAO Yali,LI Zhenlei,LIU Xudong,et al.Research on early-warning method of rockburst based on convolutional neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(2):101.[doi:10.11731/j.issn.1673-193x.2022.10.015]
[7]李子奇,蒋柱虎,王力,等.基于深度学习的工程结构损伤识别研究进展[J].中国安全生产科学技术,2022,18(12):43.[doi:10.11731/j.issn.1673-193x.2022.12.006]
LI Ziqi,JIANG Zhuhu,WANG Li,et al.Research progress in damage identification of engineering structure based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(2):43.[doi:10.11731/j.issn.1673-193x.2022.12.006]
[8]唐豪,奉鑫鑫,高曙,等.基于视频分析的空管员违规行为识别方法*[J].中国安全生产科学技术,2023,19(1):196.[doi:10.11731/j.issn.1673-193x.2023.01.029]
TANG Hao,FENG Xinxin,GAO Shu,et al.Violations recognition method of air traffic controllers based on video analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):196.[doi:10.11731/j.issn.1673-193x.2023.01.029]
[9]黄鹏,房志明,朱曼,等.基于SSD网络的电梯内电动自行车检测研究*[J].中国安全生产科学技术,2023,19(2):167.[doi:10.11731/j.issn.1673-193x.2023.02.023]
HUANG Peng,FANG Zhiming,ZHU Man,et al.Research on detection of electric bicycles in elevator based on SSD network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):167.[doi:10.11731/j.issn.1673-193x.2023.02.023]
[10]夏正洪,何琥,吴建军,等.基于深度学习的航空铆钉分类及异常情况检测*[J].中国安全生产科学技术,2023,19(6):199.[doi:10.11731/j.issn.1673-193x.2023.06.028]
XIA Zhenghong,HE Hu,WU Jianjun,et al.Aviation rivet classification and abnormal situation detection based on deep learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):199.[doi:10.11731/j.issn.1673-193x.2023.06.028]