|±¾ÆÚĿ¼/Table of Contents|

[1]ÕÔ½Ü,Íôºé·¨,Îâ¿­.»ùÓÚÌØÕ÷ÔöÇ¿¼°¶à²ã´ÎÈںϵĻðÔÖ»ðÑæ¼ì²â[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2024,20(1):93-99.[doi:10.11731/j.issn.1673-193x.2024.01.014]
¡¡ZHAO Jie,WANG Hongfa,WU Kai.Fire flame detection based on feature enhancement and multi-level fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(1):93-99.[doi:10.11731/j.issn.1673-193x.2024.01.014]
µã»÷¸´ÖÆ

»ùÓÚÌØÕ÷ÔöÇ¿¼°¶à²ã´ÎÈںϵĻðÔÖ»ðÑæ¼ì²â
·ÖÏíµ½£º

¡¶Öйú°²È«Éú²ú¿Æѧ¼¼Êõ¡·[ISSN:1673-193X/CN:11-5335/TB]

¾í:
20
ÆÚÊý:
2024Äê1ÆÚ
Ò³Âë:
93-99
À¸Ä¿:
Ö°Òµ°²È«ÎÀÉú¹ÜÀíÓë¼¼Êõ
³ö°æÈÕÆÚ:
2024-01-31

ÎÄÕÂÐÅÏ¢/Info

Title:
Fire flame detection based on feature enhancement and multi-level fusion
ÎÄÕ±àºÅ:
1673-193X(2024)-01-0093-07
×÷Õß:
ÕÔ½ÜÍôºé·¨Îâ¿­
£¨1.½úÖÐÖ°Òµ¼¼ÊõѧԺ£¬É½Î÷ ½úÖÐ 030600;
2.Ì«Ô­Àí¹¤´óѧ£¬É½Î÷ Ì«Ô­ 030024£©
Author(s):
ZHAO Jie WANG Hongfa WU Kai
(1.Jinzhong Vocational and Technical College,Jinzhong Shanxi 030600,China;
2.Taiyuan University of Technology,Taiyuan Shanxi 030024,China)
¹Ø¼ü´Ê:
»ðÔÖ»ðÑæ¼ì²âÉñ¾­ÍøÂçÌØÕ÷ÔöÇ¿¶à²ã´ÎÈÚºÏ×ÔÊÊÓ¦¶à³ß¶È
Keywords:
fire flame detection neural network feature enhancement multi-level fusion adaptive multi-scale
·ÖÀàºÅ:
TP391.4;X932
DOI:
10.11731/j.issn.1673-193x.2024.01.014
ÎÄÏ×±êÖ¾Âë:
A
ÕªÒª:
ΪÌáÉý»ðÔÖ»ðÑæʶ±ð¼ì²â·½·¨ÐÔÄÜ£¬½«´«Í³Í¼Ïñ´¦ÀíÓëÉñ¾­ÍøÂç½áºÏ£¬Ìá³ö1ÖÖ»ùÓÚÌØÕ÷ÔöÇ¿¼°¶à²ã´ÎÈںϵÄÇáÁ¿¼¶»ðÔÖ»ðÑæ¼ì²âÄ£ÐÍ¡£Ä£ÐÍÀûÓöàÖÖÉ«²Ê¿Õ¼äת»»Ëã·¨ÔöÇ¿»ðÑæÌØÕ÷ÐÅÏ¢£¬²¢Éè¼ÆË«½×¶Î¶à²ã´ÎÌØÕ÷ÌáÈ¡ÈںϽṹ£¬ÅäºÏ¿Õ¼ä×¢ÒâÁ¦»úÖƶԻðÑæÐÅÏ¢ÓÉ´Öµ½¾«½øÐÐÌáÈ¡£»Í¬Ê±£¬Õë¶Ô»ðÔÖ»ðÑæÌص㣬ÒýÈëÓÉdzµ½ÉîÖð²½ÈںϵÄ×ÔÊÊÓ¦¶à³ß¶ÈÈںϽṹ£¬ÌáÉý¶Ô²»Í¬½×¶Î»ðÔÖÄ¿±êµÄ¼ì²â¾«¶È¡£Ñо¿½á¹û±íÃ÷£º±¾ÎÄÄ£ÐÍ¿ÉÓÐЧÌáÉý»ðÔÖ»ðÑæµÄ¼ì²âЧ¹û£¬ÇÒ¾ßÓиü¸ßµÄÎȶ¨ÐԺͳ°ôÐÔ£¬¿É׼ȷ¸ßЧµØʵÏÖ»ðÔÖ»ðÑæ¼ì²â¡£Ñо¿½á¹û¿ÉΪÏÖÓлðÔÖ¼ì²âÉ豸Ìṩ¸ü׼ȷµÄʶ±ð½á¹û£¬´Ó¶ø¸üºÃµØÔ¤·À»ðÔÖʹʷ¢Éú¡£
Abstract:
In order to improve the recognition and detection performance of fire flame methods,a lightweight fire flame detection model based on feature enhancement and multi-level fusion was proposed by combining traditional image processing with neural network.Multiple color space conversion algorithms were used in the model to enhance the flame feature information,and a two-stage multi-level feature extraction fusion structure was designed,which was combined with spatial attention mechanism to extract the flame information from rough to fine.At the same time,based on the characteristics of fire flame,an adaptive multi-scale fusion structure that gradually integrated from shallow to deep was introduced to improve the detection accuracy of fire objects in different stages.The results show that the proposed model can effectively improve the detection effect of fire flame,and has higher stability and robustness,which can accurately and efficiently achieve the fire flame detection.The research results can provide more accurate identification results for existing fire detection equipment,so as to better prevent fire accidents.

²Î¿¼ÎÄÏ×/References:

£Û1£Ý²Ü½­ÌÎ,ÇØÔ¾Ñã,¼§Ïþ·É.»ùÓÚÊÓƵµÄ»ðÑæ¼ì²âËã·¨×ÛÊö£ÛJ£Ý.Êý¾Ý²É¼¯Óë´¦Àí,2020,35(1):35-52. CAO Jiangtao,QIN Yueyan,JI Xiaofei.Review on video based flame detection algorithm£ÛJ£Ý.Journal of Data Acquisition and Processing,2020,35(1):35-52.
£Û2£ÝÁõºéÌÎ.»ùÓÚÊÓ¾õͼÏñµÄ»ðÔÖ¼ì²âËã·¨Ñо¿ÓëʵÏÖ£ÛD£Ý.Çػʵº£ºÑàɽ´óѧ,2021.
£Û3£ÝKHAN F,XU Z,SUN J,et al.Recent advances in sensors for fire detection£ÛJ£Ý.Sensors,2022,22(9):3310.
£Û4£Ýã¢ÐÂÐÇ,ñÒлÝ,¹ÙºéÔË.»ùÓÚ¹âÏË´«¸ÐµÄ»ðÔÖ¼ì²â¼¼Êõ£ÛJ£Ý.ÒÇ±í¼¼ÊõÓë´«¸ÐÆ÷,2006(9):59-60. YUN Xinxing,CHU Xinhui,GUAN Hongyun.Fire detection technology based on fiber-optic sensor£ÛJ£Ý.Instrument Technique and Sensor,2006(9):59-60.
£Û5£ÝWANG X,LI Y,LI Z.Research on flame detection algorithm based on multi-feature fusion£ÛC£Ý//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC).IEEE,2020,1:184-189.
£Û6£ÝçÑΰ־,½Õ×ÄÉ,Íõ¿¡Áú,µÈ.»ùÓÚÊÓ¾õµÄ»ðÔÖ¼ì²âÑо¿£ÛJ£Ý.É­ÁÖ¹¤³Ì,2022,38(1):86-92. MIAO Weizhi,LU Zhaona,WANG Junlong,et al.Fire detection research based on vision£ÛJ£Ý.Forest Engineering,2022,38(1):86-92.
£Û7£ÝÍõÉúÓª.»ùÓÚ¼ÆËã»úÊÓ¾õµÄÉ­ÁÖ»ðÔÖ¼ì²âËã·¨Ñо¿£ÛD£Ý.ÄþÏÄ£º±±·½Ãñ×å´óѧ,2021.
£Û8£ÝTOPTAÿðþ‰C B,HANBAY D.A new artificial bee colony algorithm-based color space for fire/flame detection£ÛJ£Ý.Soft Computing,2020,24(14):10481-10492.
£Û9£ÝÕŽ¨¶«,Áõѧ¾ý,ɳܿ,µÈ.»ùÓڸĽøͼÏñ¶àÌØÕ÷µÄΣ»¯Æ·»ðÔÖ¼ì²âËã·¨£ÛJ£Ý.×Ô¶¯»¯ÓëÒDZí,2021,36(8):52-57. ZHANG Jiandong,LIU Xuejun,SHA Yun,et al.Dangerous chemicals fire detection algorithm based on improved image multi features £ÛJ£Ý.Automation & Instrumentation,2021,36(8):52-57.
£Û10£ÝÍõÁÖ,ÕÔºì.¸Ä½øYOLOv3µÄ»ðÔÖ¼ì²â£ÛJ£Ý.¼ÆËã»úϵͳӦÓÃ,2022,31(4):143-153. WANG Lin,ZHAO Hong.Fire detection based on improved YOLOv3 £ÛJ£Ý.Computer Systems & Applications,2022,31(4):143-153.
£Û11£ÝWANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors£ÛC£Ý//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver:2023:7464-7475.
£Û12£ÝÕÅÈÚ,ÕÅΪ.»ùÓڸĽøGhostNet-FCOSµÄ»ðÔÖ¼ì²âËã·¨£ÛJ£Ý.Õã½­´óѧѧ±¨£¨¹¤Ñ§°æ£©,2022,56(10):1891-1899. ZHANG Rong,ZHANG Wei.Fire detection algorithm based on improved GhostNet-FCOS £ÛJ£Ý.Journal of Zhejiang University (Engineering Science),2022,56 (10):1891-1899.
£Û13£ÝÍô×Ó½¡,¸ß»À±ø,ºîÓîÏè,µÈ.¸Ä½øYOLOX-nanoµÄ»ðÔÖ»ðÑæÑÌÎí¼ì²â£ÛJ£Ý.¼ÆËã»úϵͳӦÓÃ,2023(1):3-12. WANG Zijian,GAO Huanbing,HOU Yuxiang,et al.Flame and smoke detection of fires based on improved YOLOX-nano£ÛJ£Ý.Computer Systems & Applications,2023(1):3-12.
£Û14£ÝÕŽ£·É,¿ÂÈü.¸Ä½øYOLOX»ðÔÖ³¡¾°¼ì²â·½·¨µÄÑо¿£ÛJ£Ý.¼ÆËã»úÓëÊý×Ö¹¤³Ì,2022,50(2):318-322,349. ZHANG Jianfei,KE Sai.Research on improved YOLOX fire scene detection method£ÛJ£Ý.Computer & Digital Engineering,2022,50(2):318-322,349.
£Û15£ÝRYU J,KWAK D.Flame detection using appearance-based pre-processing and Convolutional Neural Network£ÛJ£Ý.Applied Sciences,2021,11(11):5138.
£Û16£ÝSHAHID M,CHIEN I F,SARAPUGDI W,et al.Deep spatial-temporal networks for flame detection£ÛJ£Ý.Multimedia Tools and Applications,2021,80:35297-35318.
£Û17£ÝDUNNINGS A J,BRECKON T P.Experimentally defined convolutional neural network architecture variants for non-temporal real-time fire detection£ÛC£Ý//2018 25th IEEE international conference on image processing (ICIP).IEEE,2018:1558-1562.
£Û18£ÝKWAK J,NAM J.Wildfire smoke detection using temporospatial features and random forest classifiers£ÛJ£Ý.Optical Engineering,2012,51(1):7208.
£Û19£ÝCUI C,GAO T,WEI S,et al.PP-LCNet:A lightweight CPU convolutional neural network£ÛJ£Ý.arXiv preprint arXiv,2021:2109.15099.
£Û20£ÝHU J,SHEN L,SUN G.Squeeze-and-excitation networks£ÛC£Ý//Proceedings of the IEEE conference on computer vision and pattern recognition.2018:7132-7141.
£Û21£ÝWOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module£ÛC£Ý//Proceedings of the European conference on computer vision (ECCV).2018:3-19.

ÏàËÆÎÄÏ×/References:

[1]Å·èº,Öܳ¤´º.»ùÓÚÉñ¾­ÍøÂçµÄÃñº½°²È«Ì¬ÊÆÆÀ¹ÀÄ£Ðͼ°·ÂÕæ[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2011,7(2):34.
¡¡OU Tao,ZHOU Chang chun.Situation assessment model of civil aviation safety based on neural network and its simulation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(1):34.
[2]ÖÜÖÒ¿Æ,ÍõÁ¢½Ü.»ùÓÚBPÉñ¾­ÍøÂçµÄú¿ó°²È«Ô¤¾¯ÆÀ¹À»úÖÆÑо¿[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2011,7(4):134.
¡¡ZHOU Zhong-ke,?WANG Li-jie.Study on safety early-warning assessment in coal mine based on bp neural networks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(1):134.
[3]ÍõÒÔºã.»ùÓÚBPÉñ¾­ÍøÂçËã·¨µÄ±±¾©ÊеØÌúÕ¾Ó¦¼±ÊèÉ¢ÄÜÁ¦·ÂÕæÆÀ¹ÀÄ£ÐÍ[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2012,8(1):5.
¡¡WANG Yi-heng.Virtual assessment model on emergency evacuation capacity of Beijing subway based on BP neural network algorithm[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(1):5.
[4]¸ÊÐñÉý,¶Ëľ¾©Ë³,´Ôΰ,µÈ.»ùÓÚÖ§³ÖÏòÁ¿»úµÄ·ÉÐа²È«Òþ»¼Î£ÏÕÐÔÆÀ¼Û[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2010,6(3):206.
¡¡GAN Xu-sheng,DUANMU Jing-shun,CONG Wei,et al.Fatalness assessment of flight safety hidden danger based on support vector machine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(1):206.
[5]ÖÜèª.»ùÓÚÉñ¾­ÍøÂçµÄ½¨ÖþÎï»ðÏÕÆÀ¼Û[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2013,9(10):177.[doi:10.11731/j.issn.1673-193x.2013.10.032]
¡¡ZHOU Jin.Fire risk assessment for buildings based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):177.[doi:10.11731/j.issn.1673-193x.2013.10.032]
[6]Áõº£±õª¬ª©ªª,Àî¹âÈÙª¬,Áõ »¶ª¬,µÈ.»ùÓÚART-2È˹¤Éñ¾­ÍøÂçµÄú¿ó°²È«·çÏÕÆÀ¼Û[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2014,10(2):81.[doi:10.11731/j.issn.1673-193x.2014.02.014]
¡¡LIU Hai bin,LI Guang rong,LIU Huan,et al.Coal mine safety risk assessment based on ARTª²2 neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):81.[doi:10.11731/j.issn.1673-193x.2014.02.014]
[7]¶ÅÛƵt,ÕÅÃô,ÍõÓ±,µÈ.»ùÓڸĽøBPÉñ¾­ÍøÂçµÄְҵΣº¦Ô¤¾¯Ä£ÐÍ*[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2009,5(5):63.
¡¡DU Xie yi,ZHANG Min,WANG Ying,et al.The early warning model for occupational hazards based on improved BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(1):63.
[8]ÓÚ­|,ÁõÔó¹¦.»ùÓÚÉñ¾­ÍøÂçÄ£Ð͵ÄȼÁÏ¿ÕÆø»ìºÏÎﱬըÍþÁ¦Ô¤²âÑо¿[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2015,11(9):83.[doi:10.11731/j.issn.1673-193x.2015.09.013]
¡¡YU Li,LIU Ze-gong.Prediction on explosion power of fuel air mixture based on neural network model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(1):83.[doi:10.11731/j.issn.1673-193x.2015.09.013]
[9]µËÁ¦,ÁõÈ«Òå,ºúÁÖ,µÈ.»ùÓÚBPÉñ¾­ÍøÂçµÄÊÜÏÞ¿Õ¼ä»ðÔÖÁªºÏ̽²â·½·¨[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2020,16(1):158.[doi:10.11731/j.issn.1673-193x.2020.01.026]
¡¡DENG Li,LIU Quanyi,HU Lin,et al.Joint detection method of fire in confined space based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(1):158.[doi:10.11731/j.issn.1673-193x.2020.01.026]
[10]˾ÐñÍ®,ÕÅÏ£ºã,ÕÔ¼Ñ,µÈ.»ùÓÚÉñ¾­ÍøÂçµÄÕ¢·§Ä£ºý¿É¿¿¶È¼ÆËã[J].Öйú°²È«Éú²ú¿Æѧ¼¼Êõ,2021,17(2):123.[doi:10.11731/j.issn.1673-193x.2021.02.019]
¡¡SI Xutong,ZHANG Xiheng,ZHAO Jia,et al.Fuzzy reliability calculation of gate valve based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(1):123.[doi:10.11731/j.issn.1673-193x.2021.02.019]

±¸×¢/Memo

±¸×¢/Memo:
ÊÕ¸åÈÕÆÚ£º 2023-08-08
×÷Õß¼ò½é£º ÕԽܣ¬Ë¶Ê¿£¬¸±½ÌÊÚ£¬Ö÷ÒªÑо¿·½ÏòΪͼÏñ´¦Àí£¬¼ÆËã»úÍøÂçÓ¦Óã¬ÖÇÄÜϵͳ¡£
¸üÐÂÈÕÆÚ/Last Update: 2024-02-19