|本期目录/Table of Contents|

[1]何庆龄,裴玉龙,刘静,等.基于WOA-LSSVM的城市道路交通事故严重度识别*[J].中国安全生产科学技术,2023,19(9):176-182.[doi:10.11731/j.issn.1673-193x.2023.09.026]
 HE Qingling,PEI Yulong,LIU Jing,et al.Recognition of urban road traffic accident severity based on WOA-LSSVM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):176-182.[doi:10.11731/j.issn.1673-193x.2023.09.026]
点击复制

基于WOA-LSSVM的城市道路交通事故严重度识别*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年9期
页码:
176-182
栏目:
职业安全卫生管理与技术
出版日期:
2023-09-30

文章信息/Info

Title:
Recognition of urban road traffic accident severity based on WOA-LSSVM
文章编号:
1673-193X(2023)-09-0176-07
作者:
何庆龄裴玉龙刘静张杰潘胜
(东北林业大学 土木与交通学院,黑龙江 哈尔滨 150040)
Author(s):
HE Qingling PEI Yulong LIU Jing ZHANG Jie PAN Sheng
(College of Civil Engineering and Transportation,Northeast Forestry University,Harbin Heilongjiang 150040,China)
关键词:
城市交通事故严重度鲸鱼优化算法最小二乘支持向量机
Keywords:
urban road traffic accident severity whale optimization algorithm (WOA) least squares support vector machine (LSSVM)
分类号:
X951
DOI:
10.11731/j.issn.1673-193x.2023.09.026
文献标志码:
A
摘要:
为预防交通安全事故,提高城市道路交通事故严重度识别正确率和适用性,基于221起城市道路交通事故数据,选择16个城市道路交通事故严重度影响因素作为特征变量,通过对连续特征变量统计分析和离散特征变量进行赋值,构建基于WOA-LSSVM的城市道路交通事故严重度识别模型。研究结果表明:一般事故肇事者年龄、驾龄和车辆车速均值最大,分别为45岁、99个月和51.6 km/h;重大事故车辆服役时间均值最大,为57.5个月;当WOA-LSSVM模型的迭代次数为30、种群规模为300时,对应城市道路交通事故严重度识别正确率、精确率、召回率和F1值分别为95.6%、95.3%、94.9%和94.7%,相较于LSSVM模型分别增加15.6%、16.4%、14.6%和18.3%,有效提高轻微事故识别的有效性。研究结果可为制定城市道路交通事故安全风险防控措施提供理论依据。
Abstract:
To prevent the traffic safety accidents and improve the correctness and applicability of severity recognition of the urban road traffic accidents,based on the data of 221 urban road traffic accidents,16 influencing factors of urban road traffic accident severity were selected as the feature variables.After the statistical analysis of continuous feature variables and assignment of discrete feature variables,a recognition model of urban road traffic accident severity based on WOA-LSSVM was constructed.The results show that the general accident perpetrators had the highest mean values of age,driving age and vehicle speed,which are 45 years,99 months and 51.6 km/h respectively.The average service time of vehicle in major accidents is the largest,which is 57.5 months.The WOA-LSSVM model has the best overall performance when the number of iterations and population size are set to 30 and 300,and the corresponding recognition correctness,accuracy,recall and F1 values of urban road traffic accident severity are 95.6%,95.3%,94.9% and 94.7% respectively,which increase by 15.6%,16.4%,14.6% and 18.3% respectively compared to the LSSVM model,so it can effectively improve the effectiveness of minor accident recognition.The research results can provide a theoretical basis for the development of safety risk prevention and control measures on the urban road traffic accidents.

参考文献/References:

[1]国家统计局.中国统计年鉴[M].北京:中国统计出版社,2022.
[2]闫星培.我国城市道路交通安全形势分析、典型经验措施与对策建议研究[J].汽车与安全,2020(1):70-82. YAN Xingpei.Analysis of the situation of urban road traffic safety in China,typical experience measures,and suggested countermeasures [J].Auto & Safety,2020(1):70-82.
[3]ZONG F,ZHANG H,XU H,et al.Predicting severity and duration of road traffic accident[J].Mathematical Problems in Engineering,2013,2013(15):1-9.
[4]李泽文,张萌萌,李虹燕.基于最优尺度Logit模型的交通事故形态致因分析[J].中国安全生产科学技术,2022,18(1):169-174. LI Zewen,ZHANG Mengmeng,LI Hongyan.Causal analysis of traffic accidents based on the optimal scale Logit model [J].Journal of Safety Science and Technology,2022,18(1):169-174.
[5]韩天园,吕凯光,许江超,等.基于APRIORI-TAN的交通事故伤害分析与预测[J].中国安全生产科学技术,2021,17(8):50-56. HAN Tianyuan,LYU Kaiguang,XU Jiangchao,et al.Traffic accident injury analysis and prediction based on APRIORI-TAN [J].Journal of Safety Science and Technology,2021,17(8):50-56.
[6]TAAMNEH M,ALKHEDER S,TAAMNEH S.Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates[J].Journal of Transportation Safety & Security,2017,9(2):146-166.
[7]金杰灵,史晨军,邓院昌.基于Hankel-DMD的城市道路交通事故风险时空预测[J].中国安全生产科学技术,2022,18(8):18-23. JIN Jieling,SHI Chenjun,DENG Yuanchang.Time-space prediction of urban road traffic accident risk based on Hankel-DMD[J].Journal of Safety Science and Technology,2022,18(8):18-23.
[8]TIAN Z,ZHANG S.Application of big data optimized clustering algorithm in cloud computing environment in traffic accident forecast[J].Peer-to-Peer Networking and Applications,2021,14(4):2511-2523.
[9]ERZURUM C Z I,KAMISLI O Z.Prediction of fatal traffic accidents using one-class SVMs:a case study in eskisehir,turkey[J].International Journal of Crashworthiness,2022,27(5):1433-1443.
[10]YU B,WANG Y T,YAO J B,et al.A comparison of the performance of ANN and SVM for the prediction of traffic accident duration[J].Neural Network World,2016,26(3):271.
[11]PARK R C,HONG E J.Urban road traffic accident risk prediction for knowledge-based mobile multimedia service[J].Personal and Ubiquitous Computing,2020,26(2):417-427.
[12]GAN J,LI L,ZHANG D,et al.An alternative method for traffic accident severity prediction:using deep forests algorithm[J].Journal of Advanced Transportation,2020,2020(10):1-13.
[13]YU L,DU B,HU X,et al.Deep spatio-temporal graph convolutional network for traffic accident prediction[J].Neurocomputing,2021,423(29):135-147.
[14]YANG Z,ZHANG W,FENG J.Predicting multiple types of traffic accident severity with explanations:a multi-task deep learning framework[J].Safety Science,2022,146:105522.
[15]TIAN Z,ZHANG S.Deep learning method for traffic accident prediction security[J].Soft Computing,2022,26(11):5363-5375.
[16]VAIYAPURI T,GUPTA M.Traffic accident severity prediction and cognitive analysis using deep learning[J].Soft Computing,2021,2021:1-13.
[17]MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67.

相似文献/References:

[1]戢晓峰,祝皋.超大城市昼夜交通事故严重程度致因对比分析——以深圳市为例[J].中国安全生产科学技术,2020,16(2):142.[doi:10.11731/j.issn.1673-193x.2020.02.023]
 JI Xiaofeng,ZHU Gao.Comparative analysis on causes of severity of traffic accidents at day and night in megacities:taking Shenzhen as example[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(9):142.[doi:10.11731/j.issn.1673-193x.2020.02.023]
[2]孙倩倩,郭仁拥,于涛,等.考虑行为特征的人群疏散模拟研究*[J].中国安全生产科学技术,2021,17(6):136.[doi:10.11731/j.issn.1673-193x.2021.06.022]
 SUN Qianqian,GUO Renyong,YU Tao,et al.Study on crowd evacuation simulation considering behavioral characteristics[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):136.[doi:10.11731/j.issn.1673-193x.2021.06.022]
[3]潘福全,牛远征,张丽霞,等.海底隧道入口段驾驶员眼动特征分析*[J].中国安全生产科学技术,2022,18(8):216.[doi:10.11731/j.issn.1673-193x.2022.08.032]
 PAN Fuquan,NIU Yuanzheng,ZHANG Lixia,et al.Analysis on eye movement characteristics of drivers at entrance section of subsea tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):216.[doi:10.11731/j.issn.1673-193x.2022.08.032]
[4]刘戎阳,郝妍熙,胡华,等.基于泰森多边形的事故多发点识别方法*[J].中国安全生产科学技术,2022,18(11):26.[doi:10.11731/j.issn.1673-193x.2022.11.004]
 LIU Rongyang,HAO Yanxi,HU Hua,et al.Identification method of accident-prone locations based on Thiessen polygon[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):26.[doi:10.11731/j.issn.1673-193x.2022.11.004]
[5]司上上,王维莉,王卓,等.考虑台风动态路径影响的疏散车辆路径规划研究*[J].中国安全生产科学技术,2023,19(12):156.[doi:10.11731/j.issn.1673-193x.2023.12.021]
 SI Shangshang,WANG Weili,WANG Zhuo,et al.Research on vehicle route planning for crowdevacuation considering influence of typhoon dynamic path[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):156.[doi:10.11731/j.issn.1673-193x.2023.12.021]
[6]杜进华,刘家林,刘正,等.降雨影响下道路交通应急疏散优化研究*[J].中国安全生产科学技术,2024,20(3):26.[doi:10.11731/j.issn.1673-193x.2024.03.004]
 DU Jinhua,LIU Jialin,LIU Zheng,et al.Study on optimization of road traffic emergency evacuation under influence of rainfall[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(9):26.[doi:10.11731/j.issn.1673-193x.2024.03.004]

备注/Memo

备注/Memo:
收稿日期: 2023-04-25
* 基金项目: 中央高校基本科研业务费专项资金项目(2572022AW62);国家重点研发计划项目(2018YFB1600902)
作者简介: 何庆龄,博士研究生,主要研究方向为交通安全、智能算法。
通信作者: 裴玉龙,博士,教授,主要研究方向为交通安全。
更新日期/Last Update: 2023-10-12